多形聚膦腈微纳米材料及其复合材料的可控化制备、功能化及应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于膦腈化学合成的特性,从介观尺度自组装的角度,建立了一种模板诱导自组装理论(组装基元为纳米粒子,基元间的连接为化学键连接),不同于常规的分子尺度自组装(组装基元为小分子或大分子,分子间的作用为非化学键连接)。一方面,提供一种新型的制备一维聚合物纳米材料的方法,拓展介观尺度自组装的研究内容;另一方面,借助纳米技术,探索环交联型聚膦腈纳米材料在高端技术领域内的应用。具体研究内容及结果如下:
     (1)在以六氯环三膦腈(HCCP)与4,4′-二羟基二苯砜(BPS)作为共聚单体,三乙胺(TEA)作为缚酸剂,丙酮为溶剂的反应体系中,分别考察了温度、超声功率、单体浓度和投料方式对产物形貌的影响,进而优化出聚膦腈(PZS)纳米纤维的制备方案。在优化方案条件下,借助SEM、TEM等手段,通过追踪PZS纳米纤维的演变过程,建议了一种PZS纳米纤维的形成机理——原位模板诱导自组装,依据此机理制备出了直径在40~60 nm,长度数微米,初始热分解温度达444℃的PZS纳米纤维,制备过程可在室温条件下、10 min内完成。
     (2)基于提出的原位模板诱导自组装机理,可控的制备出了多形PZS纳米管(辣椒状、支化状及均匀管)及功能化纳米管,这些PZS纳米管具有高度交联的化学结构,N_2吸附试验表明该类型纳米管的壁面上有微孔及介孔的存在,这种独特的结构使其有望作为药物载体材料、吸附剂材料及纳米反应器。另外,通过改变溶剂极性或超声条件,可实现产物形貌从纳米管到微球的渐变过程。
     (3)以所制备的聚膦腈微纳米材料为前驱体,通过高温碳化实现了多孔碳球、碳纳米纤维和碳纳米管的制备,探索出了一条新的制备碳微纳米材料的路径。碳材料的比表面积和孔容的大小可通过调节碳化温度或高温条件下的保温时间来控制,微孔直径分布在0.5~1nm之间,微孔的形成是PZS在碳化过程中非碳组分逸出造成的。
     (4)基于外加模板诱导自组装机理,我们制备了一种Ag/PZS同轴纳米电缆,所制备的同轴电缆有如下特点:由于采用了一种高稳定性的交联聚膦腈为同轴纳米电缆的壳层材料,其在空气中的热分解温度为440℃,远高于常规的线形聚合物壳层材料的热分解温度,因而,以交联聚膦腈作为壳层材料,可实现对金属纳米线更好的保护;通过调节共聚单体和Ag纳米线的摩尔比,本纳米同轴电缆的壳层材料厚度可在80~300nm之间调控,从而满足不同场合对同轴纳米电缆的要求;本方案所涉及的Ag/PZS同轴纳米电缆的制备过程由于是在室温下完成,无需表面活性剂或保护剂,因而工艺简单,易于控制并可节约能源。
     (5)基于外加模板诱导自组装机理,我们用聚膦腈对多壁碳纳米管(CNTs)进行了改性,就改性过程而言,本方法有如下优点:PZS功能化的碳纳米管可轻易的溶解于水及大部分有机溶剂中(如DMF、丙酮、THF、乙醇等);PZS在CNTs表面的非共价键包覆过程是借助外加模板诱导自组装机理而非传统的π-π相互机理;PZS在CNTs表面的包覆过程是室温条件下一步完成的,没有使用任何表面活性剂或协同剂,简化了后处理程序,并且包覆层的厚度是可控的。
     (6)以HCCP与BPS为共聚单体,TEA为缚酸剂,室温条件下成功制备了以Si纳米球为核、PZS为壳的纳米复合微球,TEM表征显示该PZS层的厚度在5~10 nm。该复合微球经900℃的高温碳化后,形成了Si@C纳米复合材料,该材料可作为锂离子电池的负极材料,显示出较高的比容量(1200 mAh/g)、较高的首次充放电效率(73.8%)和良好的循环稳定性。
In this paper, based on the characteristic of phosphazene chemistry, a new template induced self-assembly mechanism (building unit is nanoparticle and the connection between units is chemical bond) was suggested from the view of meso-scale point, different from the normal molecular scale self-assembly (building unit is molecule or macromolecule and the connection between units is nonchemical bond). On the one hand, to provide a novel method to preparing one dimensional polymer nanomaterials, widening the research area of meso-scale assembly field; on the other hand, with the help of nanotechnology, to explore the application of cyclomatrix-type poly phosphazene nanomaterials in high-tech fields. Special research content and results are as follows.
     In the reaction system with hexachlorocyclotriphosphazene (HCCP) and 4,4'-sulfonyldiphenlo (BPS) as comonomers, triethylamine (TEA) as acid-acceptor, and acetone as solvent, an optimum condition for preparing poly(cyclotriphosphazene -co-4,4'-sulfonyldiphonel) (PZS) nanofibers was obtained through checking the influence of different conditions such as temperature, ultrasonic power, monomer concentration, and feeding methods on the morphology of as-synthesized product. Under the optimum condition, with the help of SEM and TEM, we tracked the evolution process of PZS nanofibers and suggested a formation mechanism of nanofibers—in situ template induced self-assembly. Based on this mechanism, we obtained PZS nanofibers with diameter of 40~60 nm, length of several micrometers and initial thermal decomposition temperature of 444°C, which could be prepared in ten minutes under room temperature.
     Based on the proposed mechanism of in situ template induced self-assembly, polymorphic PZS nanotubes (capsicum-like, uniform and branched) and functionalized PZS nanotubes were prepared separately. All these nanotubes owned a highly cross-linked chemical structure. Results of nitrogen adsorption test showed that the surface of as-synthesized nanotubes possessed micro- and mesopores. The unique structure is expected to make them as drug carriers, adsorption materials and nanoreactors. In addition, the morphology change of as-synthesized product could be realized from nanotubes to microspheres by changing the polarity of reaction solvent or ultrasonic power.
     Taking the PZS micro- and nanomaterials as precursors, a new road to carbon materials including porous carbon spheres, carbon nanotubes and nanofibers was developed through high temperature carbonization. The specific surface area and pore volume of carbon materials could be controlled by adjusting the size of carbonization temperature or keeping time under high temperature. Characterization results showed that the pore diameter distribution of the carbon materials was centered at 0.5~1 nm and their formation originated from the escaped non-carbon elements.
     Based on the external template induced self-assembly mechanism, Ag/PZS (core/shell) coaxial nanocables were prepared, which had typical characteristics as follows: (1) the shell materials possess highly stable cross-linked structure with 440°C of initial thermal decomposition temperature, much higher than that of the normal linear polymer for shell materials, and thus cross-linked PZS as shell layer could better protect the metal nanowires as core layer; (2) the shell thickness of nanocalbes could be adjusted from 80 to 300 nm through changing the molar ratio of comonomers to silver nanowires, meeting the needs of different occasions on the coaxial nanocables; and (3) the preparation of Ag/PZS nanocables was performed without use of any surfactants or protective agents at room temperature, which process was simple, easy to control and reduce energy consumption.
     On the basis of the external template induced self-assembly mechanism, multi-wall carbon nanotubes (MWCNTs) were modified by polyphosphazenes successfully. As for the modification process, this method had the following advantages: (1) the PZS-functionalized carbon nanotubes could be easily dissolved in water and most organic solvents such as DMF, acetone, THF, and ethanol, (2) the non-covalent wrapping process of PZS on the carbon nanotubes was based on the external template induced self-assembly mechanism, rather than the conventional n-n interaction, (3) the wrapping process could be performed in one pot at room temperature, without using any surfactants or synergists, and thus the post-processing was simplified, and (4) the wrapping layer thickness on the MWCNTs could be controlled.
     Si@PZS composite nanospheres with 5~10 run shell (PZS) thickness were prepared successfully using HCCP and BPS as comonomers, and TEA as acid-acceptor at room temperature. After carbonization of the composite nanospheres at 900°C , Si@C nanocomposites with porous carbon layer were obtained. The electrochemical measurements showed that the carbonization samples exhibited a high specific capacity of 1200 mAh/g, a high first charge-discharge efficiency of 73.8%, and an excellent cycling stability. The superior electrochemical performance makes the Si@C nanocomposite as a promising cathode material for lithium-ion batteries.
引文
[1]白春礼,纳米科学与技术,云南:云南科技出版社,1995
    [2]江明,艾森伯格,刘国军,大分子自组装,北京:科学出版社 2006
    [3]江雷,冯琳,仿生智能纳米界面材料,北京:化学工业出版社 2007
    [4]Kim F,Kwan S,Akana J,Yang P D,Langmuir-Blodgett nanorod assembly,J Am Chem Soc,2001,123:4360-4361.
    [5]Andres R P,Bielefeld J D,Henderson J I,Janes D B,Kolagunta V R,Kubiak C P,Mahoney W J,Osifchin R G,Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters,Science,1996,273:1690-1693.
    [6]Patil V,Mayya K S,Pradhan S D,Sastry M,Evidence for Novel Interdigitated Bilayer Formation of Fatty Acids during Three-Dimensional Self-Assembly on Silver Colloidal Particles,J Am Chem Soc,1997,119:9281-9282.
    [7]Mirkin C A,Letsinger R L,Mucic R C,Storhoff J J,A DNA-based method for rationally assembling nanoparticles into macroscopic materials,Nature,1996,382:607-609.
    [8]Boal A K,Rotello V M,Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds,J Am Chem Soc,2000,122,734-735.
    [9]Caruso F,Susha A S,Giersig M,Mohwald H,Magnetic Core-Shell Particles:Preparation of Magnetite Multilayers on Polymer Latex Microspheres,Adv Mater,1999,11:950-953.
    [10]Caruso F,Caruso R,Mohwald H,Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,Science,1998,282(5391):1111-1114.
    [11]Bowden N B,Weck M,Choi I S,Whitesides G M,Molecule-Mimetic Chemistry and Mesoscale Self-Assembly,Acc Chem Res,2001,34:231-238.
    [12]Bico J,Roman B,Moulin L,Boudaoud A,Elastocapillary coalescence in wet hair,Nature,2004,432:690-690.
    [13]Bein T.Supramolecular architecture.Tailoring structure and function of extended assemblies,American Chemistry Society Symposium Series,1992,1-7.
    [14]Zhang L.,Eisenberg A.Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solution.Science,1995,268(5218):1728.
    [15]Ryan A J,The 16th Annual Conference of the Polymer Process Society(PPS-16),Shanghai,China,June,2000,6:6-7.
    [16]Jenekhe S A,Chem X L,Self-assembly aggregates of rod-coil block copolymers and...and encapaulation of fullenes,Science,1998,279:1903-1907.
    [17]Jenekhe S A,Chem X L,Self-assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers,Science,1999,283:372-375.
    [18]Engelkamp H,Middelbeek S,Nolte R J M,Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity,Science,1999,284:785-788.
    [19]Stupp S I,LeBonheur V,Walker K,Li L S,Huggins K,Keser M & Amstutz A,Supramolecular Materials:Self-Organized Nanostructures,Science,1997,276:384-389.
    [20]Osterbacka R,An C P,Jiang X M,et al.,Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals,Science,2000,287:839-842.
    [21]B.M.Discher,Y.Y.Won,D.S.Ege et al,Polymersomes:tough vesicles made from diblock copolymers,Science,1999,284:1143-1146.
    [22]Decher G,Fuzzy Nanoassemblies:Toward Layered polymeric Multicomosited,Science,1997,277:1232-1237.
    [23]J.Q.Sun,L.Cheng,F.Liu,S.J.Dong,Z.Q.Wang,X.Zhang,J.C.Shen,Covalently attached multilayer assemblies containing photoreactive diazo-resins and conducting poly aniline,Colloids and surfaces A,2000,169:209.
    [24]B Chen,H Zhang,N Du,D Li,X Ma,D Yang,Hybrid nanostructures of Au nanocrystals and ZnO nanorods:Layer-by-layer assembly and tunable blue-shift band gap emission,Materials Research Bulletin,2009 44:889-892.
    [25]Liu Y,Xiao S,Li H,et al,Self-Assembly and Characterization of A Novel Hydrogen-Bonded Nanostructure,J.Phys.Chem.B.,2004,108:6256-6260.
    [26]James N.Wilson,Carlito G.Bangcuyo,Belma Erdogan,Michael L.Myrick,Uwe H.F.Bunz,Nanostructuring of Poly(ary leneethynylene)s:Formation of Nanotowers,Nanowires,and Nanotubules by Templated Self-Assembly,Macromolecules,2003,36:1426-1428.
    [27]Yu C L,Zhai J,Gao X F,et al,Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film,J.Phys.Chem.B,2004,108:4586-4589.
    [28]Zhang L J,Wan M X,Self-assembly of polyaniline-from nanotubes to hollow microspheres,Adv Funct Mater,2003,13,815-820.
    [29](a) Yu SH,Antonietti M,Colfen H,Giersig M.Synthesis of very thin 1D and 2D CdWO4nanoparticles with improved fluorescence behavior by polymer controlled crystallization,Angew Chem Int Ed,2002,41:2356-2360;
    (b) Yu SH,Antonietti M,Colfen H,Hartmann J.Growth self-assembly of BaCrO_4 nanofibers towards hierarchical and repetitive superstructures by polymer controlled mineralization reactions,Nano Lett,2003,3:379-382;
    (c) Qi:LM,Li J,Ma J M.Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers,Adv Mater,2002,14:300-303.
    [30](a) Brust M,Walker M,Bethell D,Schiffrin D J,Whyman R,Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-liquid System,Chem.Commun.,1994,7:801-802;
    (b) Hostetler M J,Templeton A C,Murray R W,Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules,Langmuir,1999,15:3782-3789.
    [31]Jin J,Iyoda T,Cao C,Song Y,Jiang L,Li T J,Zhu D B,Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through pi-pi Interactions,Angew Chem Int Ed,2001,40:2135-2138.
    [32]Caruso F,Susha A S,Giersig M,Mohwald H,Magnetic core-shell particle:Preparation of magnetite multilayers on polymer latexmicrospheres.Adv.Mater,1999,11:950.
    [33]Euliss L E,Grancharov S G,Obrien S,Deming T J,Stucky G D,Murray C B,Held GA,Coorperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media,Nano Lett.,2003,3:1489.
    [34]Liu H,Li S,Zhai J,Li H,Zheng Q,Jiang L,Zhu D,Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films,Angew Chem Int Ed,2004,43:1146.
    [35]Kong X Y,Wang Z L,Spontaneous polarization-induced nanohelixes,nanosprings,and nanorings of piezoelectric nanobelts,Nano Lett,2003,3:1625-1631.
    [36]Gao P X,Ding Y,Mai W,Hughes W L,Lao C S,Wang Z L,Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices,Science,2005,309:1700-1974.
    [37]Caswell K K,Wilson J N,Bunz U H F,Murphy C J,Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors,J.Am.Chem.Soc.,2003,125:13914.
    [38]Wolfe D B,Snead A,Mao C,Bowden N B,Whitesides G M,Mesoscale Self-Assembly:Capillary Interactions When Positive and Negative Menisci Have Similar Amplitudes,Langmuir,2003,19:2206-2214.
    [39]Choi I S,Weck M,Xu B,Jeon N L,Whitesides G M,Mesoscopic,Templated Self-Assembly at the Fluid-Fluid Interface,Langmuir,2000,16:2997-2999.
    [40]Boncheva M,Ferrigno R,Bruzewicz D A,Whitesides G M,Plasticity in Self-Assembly:Templating Generates Functionally Different Circuits from a Single Precursor,Angew Chem Int FA,2003,42:3368-3371.
    [41]Choi I S,Bowden N,Whitesides GM,Macroscopic,Hierarchical,Two-Dimensional.Self-Assembly,Angew Chem Int Ed,1999,38:3078-3081.
    [42]Bowden N,Terfort A,Carbeck J,Whitesides GM,Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays,Science,1997,276:233-235.
    [43]Bowden N,oliver S R J,Whitesides G M,Self-Assembly of Hexagonal Rods Based...Negative Menisci,J Phys Chem B,2000,104:2714-2724.
    [44]Tate D P,Hergenrother W G,Kang J W,Graves D F,Synthesis of phosphazene polymers,Polymer Preprints,Division of Polymer Chemistry,American Chemical Society,1979,20,177-178.
    [45]Thomas A A,David J S,Process for preparing polyphosphazene polymers containing fluoroalkoxy and/or aryloxy substituents,USP 4,357,458,1980.
    [46]Young S G,Kojima M,Magill J H,Lin F T,Phase transition in polyphosphazenes,Polymer,1992,33(15),3215-3225.
    [47]Allcock H R,Rational design and synthesis of new polymeric materials,Science,1992,255,1106-1112.
    [48]Jaeder R De,Gleria M,Poly(organophosphazene)s and related compounds:synthesis,properties and applications,Prog Polym Sci,1998,23,179-276.
    [49]Chatani Y,Yatsuyanagi K,Structural studies of polyphosphazenes 1:Molecular and crystal structures of poly(dichlorophosphazene),Macromolecules,1987,20,1042-1045.
    [50]Pentini M,Barbetta A,Masci G,et al.Solution behavior of the poly[bis(carboxy latophenoxy)phosphazene]polyelectrolyte,Macromolecules,1997,30,7456-7461.
    [51]Allcock H R,Developments at the interface of inorganic,organic,and polymer chemistry,Inorganic macromolecules,C & EN,1985,March 18,22-36.
    [52]Neilson R H,Neilson P W,poly(alkyl/arylphosphazenes) and their precursors,Chemical Reviews,1988,88:541-562.
    [53]Allcock H R,Kugel R L,Phosphonitrilic Compounds.Ⅶ.High Molecular Weight Poly(diaminophosphazenes),Inorganic Chemistry 1966,5,1716-1718.
    [54]Allcock H R,Kugel R L,Synthesis of high polymeric alkoxy- and aryloxyphosphonitriles,J Am Chem Soc,1965,87,4216-4217.
    [55]Allcock H R,Kugel R L,Phosphonitrilic compounds,Ⅶ High molecular weight poly (diaminophosphazene),Inorg Chem,1966,5,1716-1718.
    [56]Allcock H R,Kugel R L,Valan K J,Phosphonitrilic compounds,Ⅵ High molecular weight Poly(alkoxy- and aryloxyphosphazenes),Inorg Chem,1966,5,1709-1715.
    [57]Allcock H R,Kugel R L,Phosphonitrilic compounds,Ⅴ Cyclized products from the reactions of hexachlorocyclotriphosphazene(phosphonitrilic chloride trimer) with aromatic dihydroxy,dithiol and diamino compounds,Inorg Chem,1966,5,1016-1020.
    [58]Potts M K,Hagauer G L,Sennett M S,Davies G,Monomer concentration effects on the kinetics and mechanism of the boron trichloride catalyzed solution polymerization of hexachlorocyclotriphosphazene,Macromolecules,1989,22(11),4235-4239.
    [59]Sennett M S,Hagauer G L,Singler R E,Davies G,Kinetics and Mechanism of boron trichloride catalyzed thermal ring-opening polymerization of hexachlorocy clotripho sphazene in 1,2,4-trichlorobenzene solution,Macromolecules,1986,19,959-964.
    [60]Honeyman C H,Manners I,Morrissey C T,Allcock H R,Ambient Temperature Synthesis of Poly(dichlorophosphazene)with Molecular Weight Control,J Am Chem Soc,1995,117,7035-7036.
    [61]Allcock H R,Crane C A,Morrissey C T,Manners I,Living cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weight,Macromolecules,1996,29,7740-7747.
    [62]Allcock H R,Nelson J M,Prange R,Crane C A,de Denus C R,Synthesis of Telechelic Polyphosphazenes via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines,Macromolecules,1999,32,5736-5743.
    [63]Allcock H R,Christine R,de Denus,Robbyn Prange,and James M.Nelson,Synthesis of Trifluoromethyl- and Methylphosphazene Polymers:Differences between Polymerization and Initiator/Terminator Properties,Macromolecules,1999,32,7999-8004.
    [64]Nelson,J M,Allcock H R,Manners I,Recent Developments in the "Living" Cationic,Ambient Temperature Synthesis of Polyphosphazenes with Controlled Architectures,Polymer Preprints,ACS Div Polym Chem,1998,39,631.
    [65]Halluin G D,Jaeger R D,Chambrette J P,Potin P,Synthesis of poly(dichorophosphazenes) from Cl3P=NP(O)Cl2,1.kinetics and mechanism,Macromolecules,1992,25,1254-1258.
    [66]Carriedo GA,Garcia Alonso FJ,Gomez-Elipe P,Fidalgo JI,Garcia Alvarez JL,Presa-Soto A.A Simplified and Convenient Laboratory-Scale Preparation of 14N or 15N High Molecular Weight Poly(dichlorophosphazene) Directly from PCl5.Chem Eur J 2003;9(16):3833-3836.
    [67]宋青,袁伟忠,李剑,唐小真,一步法合成线性聚二氯磷腈中间体及表征,上海交通大学报,2005,39,1824-1827.
    [68]Umit Tunca,Ali Erdogmus,Gurkan Hizal,Synthesis and characterization of aromatic cyclolinear phosphazene polyetherketones containing bis-Spiro-substituted cyclotriphosphazene unit,Journal of Polymer Science:Part A:Polymer Chemistry,2001,39,2993-2997.
    [69]Allcock H R,Kellam E C,Hofmann M A,Synthesis of cyclolinear phosphazene-containing polymers via ADMET poly merization,Macromolecules 2001,34,5140-5146
    [70]Dona Mathew,C P Reghunadhan Nair,KN Ninan,Phosphazene-triazine cyclomatrix network polymers:some aspects of synthesis,thermal- and flame-retardant characteristics,Polym Int 2000,49,48-56
    [71]Giacomo Facchin,Luigi Guarino,Michele Modesti,Francesco Minto,and Mario Gleria,Thermosetting Resins and Azo Dyes Based on Phosphazenes,Journal of Inorganic and Organometallic Polymers,1999,9,133-150.
    [72]Teng Zhang,Qing Cai,De-Zhen Wu,Ri-Guang Jin,Phosphazene cyclomatrix network polymers:Some aspects of the synthesis,characterization,and flame-retardant mechanisms of polymer,Journal of Applied Polymer Science,2005,95,880-889.
    [73]Wright P V,Electrical Conductivity in Ionic Complexes of Poly(ethylene oxide),Britain Polymer Journal,1975,7,319-327.
    [74]Aramand M B,Chabagno J M,Duclor M,Fast Ion Transport in Solids,New York:North Holland,1979,131.
    [75]Allcock H R,Austin P E,Neeman T X,et al,Polyphosphazenes with etheric side groups:prospective biomedical and solid solid electro lyte polymers,Macromolecules,1986,19,1508-1512.
    [76]Blonsky P M,Shriver D F,Austin P E and Allcock H R,complex formation,conductivity and lithium ion transport in polyphosphazene-based solid electrolytes,Polymer Material Science and Engineering,Proceedings of the ACS Division of Polymeric Material,1985,53,118-122.
    [77]Blonsky P M,Shriver D F,Austin P E,Allcock H R,complex formation and ionic conductivity of polyphosphazene solid electrolytes,Solid State Ionics,1986,18,258-264.
    [78]Blonsky P M,Clancy S,Hardy L C,et al,Polymeric electrolytes,Chemtechnolygy,1987,12,758-762.
    [79]Vincent C,Polymer electrolytes,Chemistry in Britain,1989,4,391-395.
    [80]Allcock,H.R.,Austin,Paul E.,Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines:chemotherapeutic models,Macromolecules,1981,14,1616-1622.
    [81]Blonsky P M,Shriver D F,Austin P E and Allcock H R,Polyphosphazene solid electrolytes,J Am Chem Soc,1984,106,6854.
    [82]Ganapathiappan S,Kaimin C,Shriver D F,Synthesis,characterization,and electrical response of phosphazene polyelectrolytes,J Am Chem Soc,1989,111,4091-4095.
    [83]Chandrasekhar V,Polymer solid electrolytes:synthesis and structure,Adv Polym Sci,1998,135,139-205.
    [84]Allcock H R,Napierala M E,et al,New Macromolecules for Solid Polymeric Electrolytes,Electrochimica Acta,1998,43,1145-1150.
    [85]Tonge J S,Shriver D F,Increased Dimentional Stability in ionically conducting polyphosphazene systems,Journal of the Electrochemistry Society,1987,134,269-270.
    [86]Nazri G A,Meibuhr S G,Effect of γ-radiation on the structure and ionic conductivity of 2-(2-methoxy-ethoxy-ethoxy) polyphosphazene/LiCF3SO3,Journal of the Electrochemistry Society,1989,136,2450-2454.
    [87]Coltrain B K,Ferrar W T,et al,Polyphosphazene molecular composites.In situ polymerization of tetraethoxysilane,Chem Mater,1992,4,358-364.
    [88] Coltrain B K, Ferrar W T, et al, Novel miscible blends of etheric polyphosphazenes with acidic polymers, Polymer Preprints, 1992, 33, 2.
    
    [89] Coltrain B K, Ferrar W T, et al, Polyphosphazene molecular composites II. In situ polymerizations of titanium, zirconium and aluminum alkoxides, Polymer Preprints, 1993, 34, 266.
    
    [90] Kim C, Kim J S, Lee M H, Ionic conduction of sol-gel derived polyphosphazenersilicate hybrid network, Synthetic Metals, 1998, 98, 153-156.
    
    [91] Morales E, Acosta J L, Conductivity and electrochemical stability of composite polymer electrolytes, Solid State Ionics, 1998, 111, 109-115.
    
    [92] Morales E, Acosta J L, Synthesis and characterization of polymeric electrolytes for solid state magnesiumbatteries, ElectrochimicaActa, 1998, 43, 791-797.
    
    [93] Morales E, Acosta J L, Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends, Solid state ionics, 1997, 96, 99-106.
    
    [94] Abraham K M, Alamgir M, Perrotti S J, Rechargeable solid-state Li batteries utilizing polyphosphazene-poly(ethylene oxide) mixed poly mer electrolytes, Journal of the Electrochemical Society, 1988, 135,535-536.
    
    [95] Abraham K M, Alamgir M, Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries, ChemMater, 1991, 3, 339-348.
    
    [96] Del Rio C, Martin-Alvarez P J, Acosta J L, Conductivity studies of solid polymer electrolytes based on polyethers and polyphosphazene blends, J Appl Polym Sci, 1998, 70, 2181-2186.
    
    [97] Acosta J L, Morales E, Jurado J R, Characterization of cathodes for rechargeable lithium batteries based on new vanadium oxides and PEO/PPz poly mer blends, JAppl Polym Sci, 1996, 59, 1173-1180.
    
    [98] Allcock H R, Prange R, Hartle T J, Poly (phosphazene-ethylene oxide) Di- and Triblock Copolymers as Solid Polymer Electrolytes, Macromolecules, 2001, 34, 5463-5470.
    
    [99] Allcock H R, Prange R, Properties of Poly(phosphazene-siloxane) Block Copolymers Synthesized via Telechelic Polyphosphazenes and Polysiloxane Phosphoranimines, Macromolecules, 2001, 34, 6858-6865
    
    [100] Allcock H R, Napierala M E, et al, The Synthesis and Characterization of Ionically-Conducting Alkoxy Ether/Alkoxy Mixed Substituent Poly(organo-phosphazenes) and their Use as Solid Solvents for Ionic Conduction, Macromolecules, 1996, 29, 1951-1956.
    
    [101] Allcock H R, Susan E K, Reed C S, et al, Synthesis of polyphosphazenes with ethyleneoxy-containing side groups: new solid electrolyte materials, Macromolecules, 1996, 29, 3384-3389.
    
    [102] Allcock H R, O'Connor S J M, et al, Polyphosphazenes Bearing Branched and Linear Oligoethyleneoxy Side Groups as Solid Solvents for Ionic Conduction, Macromolecules, 1996, 29, 7544-7552.
    
    [103] Allcock H R, Sunderland N J, et al, Polyphosphazenes with Novel Architectures: Influence on Physical Properties and Behavior as Solid Polymer Electrolytes, Macromolecules, 1998, 31, 8026-8035.
    
    [104] Allcock H R, Napierala M E, et al, Ionic conduction in polyphosphazene solids and gels: 13C, 31P and 15N NMR spectroscopy and molecular dynamics simulations, Macromolecules, 1999, 32, 732-741.
    
    [105] York S, Kellam E C, et al, A vibrational spectroscopic study of lithium triflate in polyphosphazenes with linear oligoethyleneoxy side-chains of different lengths, ElectrochimicaActa, 2001, 46, 1553-1557.
    [106]Rabin Bissessur,David Gallant,Ralf Bruning.New poly[bis-(methoxyethoxyethoxy)phosphazene]-MoS_2 nanocomposite,Solid State Ionics,2003,158,205-209.
    [107]Reed C S,Kevor S T,Paul W,et al.,Thermal stability and compressive strength of calcium-deficient hydroxyapatite-poly[bis(carboxylatophenoxy)phosphazene]composites,Chemistry of Materials,1996,8:440-447.
    [108]Taylor J P,Allcock H R,Phosphorylated Phosphazenes as Flame Retardant Polymers and Polymer Additives,Polymer Preprints,1999,40,910.
    [109]Allcock H R,Taylor J P,Phosphorylation of phosphazaenes and its effects on thermal properties and fire retardant behavior,Polymer Engineering & Science,2000,40:1177.
    [110]Ran Liu,Xiaodong Wang,Synthesis,characterization,thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin,Polymer Degradation and Stability 94(2009)617-624.
    [111]Allcock H R,A.A.Dembek,C.Kim,et al,Second-order nonlinear optical polyorganophophazenes:Synthesis and nonlinear opticalcharacterization.Macro molecules,1991,24,1000-1103.
    [112].Yang Pan,Xiaozhen Tang,Lu Zhu,Yawen Huang.Synthesis and Characterization of a New High-Tg Photorefractive Material,European Polymer Journal,2007,43,1091.
    [113].Yang Pan,Xiaozhen Tang,Second-order nonlinear optical properties of polyphosphazenes containing multi-dipolar and imidazole-based chromophores,e-Polymers,2007,110.
    [114].Yang Pan,Xiaozhen Tang,Synthesis and Properties of Novel Y-shaped NLO Polymers Containing Imidazole-Based Chromophores,Journal of Applied Polymer Science,2008,108,2802.
    [115].Yang Pan,Xiaozhen Tang.,Synthesis and Characterization of Azobenzene-Containing Side-Chain Photorefractive Polymers,European Polymer Journal,2008,44,408.
    [116]Stone M L,Gresham G L,Polson L A,Characterization of two polyphosphazene materials as membranes in membrane induction mass spectrometry,Analytica Chimica Acta,2000,407,311-317.
    [117]Allcock H R,Primrose A P,et al,Inclusion of Polymers within the Crystal Structure of Tris(o-phenylenedioxy)cyclotriphosphazene,Chem Mater,1999,11,1243-1252.
    [118]Nagai K,Freeman B D,Cannon A,et al,Gas permeability of poly(bis-trifluoroethoxyphosphazene)and blends with adamantane amino/trifluoroethoxy(50/50) polyphosphazene,J Membrane Sci,2000,172,167-176.
    [119]Allcock H R,Pucher S R,Scopelianos A G Poly[(amino acid ester)phosphazenes]as substrates for the controlled release of small molecules,Biomaterials,1994,15,563-569.
    [120]Allcock H R,Fuller T J,Mack D P,et al,Synthesis of poly[(amino acid alkyl ester)phosphazene],Macromolecules,1977,10,824-830.
    [121]Lee S B,Song S C,Jin J I,Sohn Y S,A New Class of Biodegradable Thermosensitive Polymers.2.Hydrolytic Properties and Salt Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxypoly(ethylene glycol) and Amino Acid Esters as Side Groups,Macromolecules,1999,32,7820-7827.
    [122]Lemmouchi Y,Schacht E,Dejardin S,Biodegradable poly[(amino acid ester)phosphazenes]for biomedical applications,J Bioact Compat Pol,1998,13,4-18.
    [123]Menemse G,Altug G,Syntheis,characterization,in vitro degradation and cytotoxicity of poly[bis(ethyl 4-aminobutyro)phosphazene],Reactive and Functional Poly mers,2002,52,71-80.
    [124]Qiu L Y,Zhu K J,Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubstituents,J Appl Poly m Sci,2000,77,2987-2995.
    [125]Qiu L Y,Zhu K J,Novel blends of poly[bis(glycine ethyl ester) phosphazene]and polyesters or polyanhydrides:compatibility and degradation characteristics in vitro,Polym Int,2000,49,1283-1288.
    [126]Ibim S EM,M S Kwon,et al,Novel polyphosphazene/poly(latide-co-glycolide)blends:miscibility and degradation studies,Biomaterials,1997,18,1565-1569.
    [127]Archel M A,Allcock H R,et al,Degradable polyphosphazene/poly(α-hydroxyester) blends:degradation studies,Biomaterials,2002,23,1667-1672.
    [128]Syam P.Nukavarapu,Sangamesh G Kumbar,Justin L.Brown,Nicholas R.Krogman,Arlin L.Weikel,Mark D.Hindenlang,Lakshmi S.Nair,Harry R.Allcock,and Cato T.Laurencin,Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering,Biomacromolecules,2008,9(7),1818-1825
    [129]Allcock H R,Pucher S R,Scopelianos A G,Poly[(amino acid ester)phosphazenes]as substrates for the controlled release of small molecules,Biomaterials,1994,15(8),563-569.
    [130]Allcock H R,Kwon S,An Ionically Cross-Linkable Polyphosphazene:Poly[bis(carboxy latophenoxy)phosphazene]and Its Hydrogels and Membranes,Macromolecules,1989,22,75-79.
    [131]Alexander K A,Chen J P,Payne L G,Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions,Biomaterials,1998,19,109-115.
    [132]Veronese F M,Marsilio F,Caliceti P,et al,Polyorganophosphazene microspheres for drag release:polymer synthesis,microsphere preparation,in vitro and in vivo naproxen release,J Control Release,1998,52,227-237.
    [133]Cohen S,Bano M C,Visscher K B,Allcock H R,et al.,Ionically cross-linkable polyphosphazene:a novelpolymer for microencapsulation,Journal of the American Chemical Society,1990,112:7832-7833.
    [134]Cohen S,Bano M C,Cima L G,et al.,Design of synthetic polymeric structures for cell transplantation and tissue engineering,Clinical Materials,1993,13(1-4):3-10.
    [135]Laurencin C T,Elamin S F,et al,Highly porous 3-dimentional polyphosphazene polymer matrix for skeletal tissue regeneration,J Biomed Mater Res,1996,30,133-138.
    [136]Anurima Singh,Lee Steely,and Harry R.Allcock,Langmuir 2005,21,11604-11607.
    [137]Harry R.Allcock,Lee B.Steely,Seong H.Kim,Jeong H.Kim,Bang-Kwon Kang,Plasma Surface Functionalization of Poly[bis(2,2,2-trifluoroethoxy) phosphazene]Films and Nanofibers,Langmuir,2007,23(15):8103-8107.
    [138]J.Vandorpe,E.Schacht,S.Dunn,A.Hawley,S.Stolnik,S.S.Davis,M.C.Garnett,M.C.Davies,L.Ilium,Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer,Biomaterials,1997,18,1147-1152.
    [139]Sundarraj Sudhakar,Alan Sellinger,Nanocomposite Dendrimers based on Cyclic Phosphazene Cores:Amorphous Materials for Electroluminescent Devices,Macromol.Rapid Commun.2006,27,247-254.
    [140]Carlos Diaz,Maria Luisa,Valenzuela,Small Molecule and High Polymeric Phosphazenes Containing Oxypyridine Side Groups and Their Organometallic Derivatives:Useful Precursors for Metal Nanostructured Materials,Macromolecules 2006,39,103-111.
    [141]朱路,微结构环交联型聚膦腈材料的制备与表征,上海交通大学博士学位论文,2007.
    [142]Dong Ha Kim,Prabhu Karan,Petra Goring,Julien Leclaire,Anne-Marie Caminade,Jean-Pierre Majoral,Ulrich Gosele,Martin Steinhart,and Wolfgang Knoll,small 2005,1,99-102.
    [143]Chuan-Liang Feng,Xinhua Zhong,Martin Steinhart,Anne-Marie Caminade,Jean-Pierre Majoral,and Wolfgang Knoll,Adv.Mater.2007,19,1933-1936
    [144]C.L.Feng,X.H.Zhong,M.Steinhart,A.-M.Caminade,J.P.Majoral,W.Knoll,Functional quantum-dot/dendfimer nanotubes for sensitive detection of DNA hybridization,Small 2008,5,566-571.
    [145]C Zheng,L A Qiu,K J Zhu,Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug,Polymer 50(2009) 1173-1177.
    [1]Holmes J D,Johnston K P,Doty R C and Korgel B A,Control of thickness and orientation of solution-grown silicon nanowires Science,2000;287:1471-1473.
    [2]Ge J P and Li Y D,Selective atmospheric pressure chemical vapor deposition route to CdS arrays,nanowires,and nanocombs Adv.Funct.Mater 2004;14:157-162.
    [3]Yu D B,Yu S H,Zhang S Y,Zuo J,Wang D B and Qian Y T,Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure Adv.Funct.Mater 2003;13:497-505.
    [4]Chen J Y,Wiley B J and Xia Y N,One-dimensional nanostmctures of metals:large-scale synthesis and some potential applications Langmuir 2007;23:4120-4129.
    [5]Aleshin A N,Polymer nanofibers and nanotubes:charge transport and device applications Adv.Mater 2006;18:17-27.
    [6]Babel A,Li D,Xia Y N and Jenekhe S A,Electrospun nanofibers of blends of conjugated polymers:morphology,optical properties,and field-effect transistors Macromolecules 2005;38:4705-4711.
    [7]Huang J X,Virji S,Weiller B H and Kaner R B,Nanostructured polyaniline sensors Chem.Eur.J.2004;10:1314-1319.
    [8]Ko S and Jang J,Protein immobilization on aminated poly(glycidyl methacrylate) nanofibers as polymeric carriers Biomacromolecules 2007;8:1400-1403.
    [9]Pham Q P,Sharma U and Mikos A G,Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:Characterization of Scaffolds and Measurement of Cellular Infiltration Biomacromolecules,2006;7:2796-2805.
    [10]Yang F,Murugan R,Wang S and Ramakrishn S,Electrospinning of nano/micro scale poly(L-lactic acid)aligned fibers and their potential in neural tis sue engineering Bio materials 2005;26:2603-2610.
    [11]Martin C R,Membrane-based synthesis of nanomaterials Chem.Mater 1996;8:1739-1746.
    [12]Ondarcuhu T and Joachim C 1998 Drawing a single nanofiber over hundreds of microns Europhys.Lett.1998;42:215-220.
    [13]Ma P X and Zhang R Y,Synthetic nano-scale fibrous extracellular matrix J.Biomed.Mater.Res.1999;46:60-72.
    [14]Whitesides GM and Grzybowski B,Self-assembly at all scales Science 2002;295:2418-2421.
    [15]de Moel K,Alberda van Ekenstein G O R,Nijland H,Polushkin E,ten Brinke G,Maki-Ontto R and Ikkala O,Polymeric Nanofibers Prepared from Self-Organized Supramolecules Chem.Mater.2001;13:4580-4583.
    [16]Huang Z M,Zhang Y Z,Kotaki M and Ramakrishna S,A review on polymer nanofibers by electrospinning and their applications in nanocomposites Compos.Sci.Technol.2003;63:2223-2253.
    [17]Catalani L H,Collins G and Jaffe M,Evidence for molecular orientation and residual charge in the electrospinning of poly(butylene terephthalate) nanofibers Macromolecules 2007;40:1693-1697.
    [18]Chronakis I S,Novel nanocomposites and nanoceramics based on polymer nanofiber using electrospinning process—A review J.Mater.Process.Technol.2005;167:283-293.
    [19]Chen-Yang YW,Yuan CY,Li CH,Yang HC,Preparation and characterization of novel flame retardant (aliphatic phosphate)cyclotriphosphazene-containing polyurethanes,J Appl Poly m Sci 2003;90:1357-1364.
    [20]Yuan CY,Chen SY,Tsai CH,Chin YS,Chen-Yang YW,Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes:synthesis and properties,Polym Adv Technol 2005;16:393-399.
    [21]Luther TA,Stewart FF,Lash RP,Wey JE,Harrup MK,Synthesis and characterization of poly {hexakis[(methyl)(4-hydro xyphenoxy)]cyclotriphosphazene},J Appl Poly m Sci 2001;82:3439-3446.
    [22]Mathew D,Reghunadhan Nair CP,Ninan KN,Phosphazene-triasine cyelomatrix network polymers:some aspects of synthesis,thermal-and flame-retardant characteristics,Poly m Int 2000;49:48-56.
    [23]Kaskhedikar N,Burjanadze M,Karatas Y,Wiemh(o|¨)fer HD,Polymer electrolytes based on cross-linked cyclotriphosphazenes,Solid State Ionics 2006;177:3129-3134.
    [24]Yuan WZ,Yuan JY,Huang XB,Tang XZ,Synthesis,characterization,and in vitro degradation of star-shaped P(ε-caprolactone)-b-poly(L-lactide)-b-poly(D,L-lactide-co-glycolide) from hexakis [p-(hydroxymethyl)phenoxy]cyclotriphosphazene initiator,J Appl Polym Sci 2007;104:2310-2317.
    [25]Cui YJ,Tang XZ,Huang XB,Chen Y,Synthesis of the Star-Shaped Copolymer of ε-Caprolactone and L-Lactide from a Cyclotriphosphazene Core,Biomacro molecules 2003;4:1491-1494.
    [26]De Jaeger R,Gleria M.,Poly(organophosphazene)s and related compounds:synthesis,properties and applications,Prog Polym Sci 1998;23:179-276.
    [27]Huang JX,Kaner RB,A general chemical route to polyaniline nanofibers,J Am Chem Soc 2004;126:851-855.
    [1] P. Kohli, C. R. Martin, Smart nanotubes for biotechnology, Curr. Pharm. Biotechnol. 2005, 6, 35.
    
    [2] S. V Ahir, E. M. Terentjev, Photomechanical actuation in poly mer-nanotube composites, Nat. Mater. 2005, 4,491.
    
    [3] M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force, Adv. Mater. 2005, 17, 1977.
    
    [4] J. P. Spatz, B. Lorenz, K. Weishaupt, H. D. Hochheimer, Observation of crossover from three- to two-dimensional variable-range hopping in template-synthesized polypyrrole and poly aniline, Phys. Rev. B. 1994, 50, 14888.
    
    [5] S. Iijima, Helical microtubules of graphitic carbon, Nature 1991, 354, 56.
    
    [6] G. M. Whitesides, J. P. Mathias, C. T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy forthe synthesis of nanostructures, Science 1991, 254, 1312.
    
    [7] G. A. Ozin, Nanochemistry: synthesis in diminishing dimensions, Adv. Mater. 1992, 4, 612.
    
    [8] O. G. Schmidt, K. Eberl, Thin solid films roll up into nanotubes, Nature 2001, 410, 168.
    
    [9] F. T. Edelmann, Angew. Chem, Fullerene pipes, tube-in-tube membranes, and carbon-nanotube tips: adding new dimensions to molecular technology, 1999, 38, 1381.
    
    [10] Z. C. Wang, C. J. Medforth, J. A. Shelnutt, Porphyrin nanotubes by ionic self-assembly, J. Am. Chem Soc. 2004, 126, 15954.
    
    [11] S. Hecht, A. Khan, Intramolecular cross-linking of helical folds: an approach to organic nanotubes, Angew. Chem. Int. Ed. 2003, 42, 6021.
    
    [12] T. Shimizu, M. Masuda, H. Minamikawa, Supramolecular nanotube architectures based on amphiphilic molecules, Chem Rev. 2005, 105, 1401.
    
    [13] C. R. Martin, Nano materials: a membrane-based synthetic approach, Science 1994, 266, 1961.
    
    [14] C. R. Martin, Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res. 1995,28,61.
    
    [15] J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials, J. Mater. Chem 1997,7, 1075.
    
    [16] D. H. Kim, P. Karan,P. Goring, J. Leclaire,A. M. Caminade, J. P. Majoral, U. Gosele, M. Steinhart,W. Knoll, Formation of Dendrimer Nanotubes by Layer-by-Layer Deposition, Small 2005, 1, 99-102.
    
    [17] C. L. Feng, X. H. Zhong, M. Steinhart, A. M. Caminade, J. P. Majoral, W. Knoll, Graded-Bandgap Quantum-Dot-Modified Nanotubes: A Sensitive Biosensor for Enhanced Detection of DNA Hybridization, Adv. Mater. 2007, 19, 1933-1936.
    
    [18] C. L. Feng, X. H. Zhong, M. Steinhart, A. M. Caminade, J. P. Majoral, W. Knoll, Functional Quantum-Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization, Small 2008, 4(5),566-571.
    
    [19] M. Bognitzki, H. Q. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, A. Greiner, Polymer, Metal, and Hybrid Nano- and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process), Adv. Mater. 2000, 12, 637.
    
    [20] M. R. Abidian, D. Kim, D. C. Martin, Conducting-Polymer Nanotubes for Controlled Drug Release, Adv. Mater.2006,18,405-409.
    [21]M.Rehahn,Organic-inorganic hybrid polymers,Acta Polym.1998,49,201.
    [22]Y.Chang,H.R.Allcock,A Covalently Interconnected Phosphazene-Silicate Hybrid Network:Synthesis,Characterization,and Hydrogel Diffusion-Related Application,Adv.Mater.2003,15,537.
    [23]A.K.Andrianov,A.Marin,J.P.Chen,Synthesis,Properties,and Biological Activity of Poly[di(sodium carboxy latoethylphenoxy)phosphazene],Biomacro molecules 2006,7,394-399.
    [24]Y.E.Greish,J.D.Bender,S.Lakshmi,P.W.Brown,H.R.Allcock,C.T.Laurencin,Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications,Biomaterials 2005,26,1.
    [25]L Zhu,Y.Y.Xu,W.Z.Yuan,J.Y.Xi,X.B.Huang,X.Z.Tang,S.X.Zheng,One-pot synthesis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via an in situ template approach,Adv.Mater.2006,18,2997.
    [26]D.T.Mitchell,S.B.Lee,L.Trofin,N.Li,T.K.Nevanen,H.Soderlund,C.R.Martin,Smart Nanotubes for Bioseparations and Biocatalysis,J.Am.Chem.Soc.124(2002) 11864-11865.
    [27]D.Wouters,U.S.Schubert,Nanolithography and Nanochemistry:Probe-Related Patterning Techniques and Chemical Modification for Nanometer-Sized Devices,Angew.Chem.Int.Ed.43(2004)2480-2495.
    [28]Y.Liu,D.C.Wu,W.D.Zhang,X.Jiang,C.B.He,T.S.Chung,S.H.Goh,K.W.Leong,Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA,Angew.Chem.Int.Ed.44(2005) 4782-4785.
    [29]J.H.Yuan,K.Wang,X.H.Xia,Highly ordered platinum-nanotubules arrays for amperometric glucose sensing,Adv.Funct.Mater 15(2005) 803-809.
    [30]J.Bamer,F.Mallwitz,L.Shu,A.D.Schl(u|¨)ter,J.P.Rabe,Covalent Connection of Two Individual Polymer Chains on a Surface:An Elementary Step towards Molecular anoconstructions,Angew.Chem.Int.Ed.42(2003) 1932-1935.
    [31]A.Bianco,M.Prato,Can carbon nanotubes be considered useful tools for biological applications? Adv.Mater 15(2003) 1765-1768.
    [32]G.E.Douberly Jr.,S.Pan,D.Walters,H.Matsui,Fabrication of protein tubules:Immobilization of proteins on peptide tubules,J.Phys.Chem.B 105(2001) 7612-7618.
    [33]D.T.Bong,T.D.Clark,J.R.Granja,M.R.Ghadiri,Self-assembling organic nanotubes,Angew.Chem.Int.Ed.40(2001) 988-1011.
    [34]D.Pantarotto,R.Singh,D.McCarthy,M.Erhardt,J.P.Briand,M.Prato,K.Kostarelos,A.Bianco,Functionalised carbon nanotubes for plasmid DNA gene delivery,Angew.Chem.Int.Ed.43(2004)5242-5246.
    [35]C.C.Chen,Y.C.Liu,C.H.Wu,C.C.Yeh,M.T.Su,Y.C.Wu,Preparation of fluorescent silica nanotubes and their application in gene delivery.Adv.Mater,Adv.Mater.17(2005) 404-407.
    [36]Z.J.Guo,P.J.Sadler,S.C.Tsang,Immobilization and visualization of DNA and proteins on carbon nanotubes,Adv.Mater.10(1998) 701-703.
    [37]X.Y.Gao,H.Matsui,Peptide-Based Nanotubes and Their Applications in Bionanotechnology,Adv.Mater 17(2005) 2037-2050.
    [38]P.Asuri,S.S.Karajanagi,E.Sellitto,D.Y.Kim,R.S.Kane,J.S.Dordick,Water-Soluble Carbon Nanotube-Enzyme Conjugates as Functional Biocatalytic Formulations,Biotechnol.Bioeng.95(2006)804-811.
    [1].江明,艾森伯格,刘国军.大分子自组装,北京:科学出版社,2006
    [2].Zhang L.,Eisenberg A.Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copoly mers in solution.Science,1995,268(5218):1728.
    [3].Gebhart C L,Kabanov A V.Evaluation of polyplexes as gene transfer agents.Journal of Controlled Release,2001(2-3),73:401
    [4].Harada-Shiba M,Yamauchi K,Harada A,Takamisawa I,Shimokado K.Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer.Gene Therapy,2002,9(6):407
    [5].Wang G,Henselwood F,Liu G.Water-soluble poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid) nanospheres as traps for perylene.Langmuir,1998,14(7):1554
    [6].Henselwood F,Wang G.Removal of perylene from water using block copolymer nanospheres or micelles.J.Appl.Polym.Sci.,1998,70(2):397
    [7].Wang H,Wang H H,Volker S U,Littrell K C,Thiyagarajan P,Yu,L.Syntheses of amphiphilic diblock copolymers containing a conjugated block and their self-assembling properties.J.Am Chem.Soc.,2000,122(29):6855
    [8].Bronstein L M,Chemyshov D M,Karlinsey R,Zwanziger J W,Matveeva V G,Sulman EM,Demidenko G N,Hentze H P,Antonietti M.Mesoporous alumina and aluminosilica with Pd and Pt nanoparticles:Structure and catalytic properties.Chem.Mater,2003,15(13):2623
    [9].Zhang L,Yu K,Eisenberg A.On-induced morphologica changes in "crew-cut" aggregates of amphiphilic block copolymers.Science,1996,273(5269):1777
    [10].Zhang L,Eisenberg A.Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution.Polym.Adv.Technol.,1998,9(10-11):677
    [11].Zhang L,Eisenberg A.Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block homopolystyrene in solution.J.polym.Sci.B.:Polym.Phys.,1999,37(13):1469
    [12].Duan H,Chen D,Jiang M,Gan W,Li S,Wang M,Gong J.Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent.J.Am Chem.Soc.,2001,123(48):12097
    [13].Yu K,Zhang L,Eisenberg A.Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution.Langmuier,1996,12(25):5980
    [14].Yu k,Eisenberg A.Bilayer morphologies of self-assembly crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution.Macromolecules,1998,31(11):3508
    [15]Shen H,Eisenberg A.Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O,Macromolecules,2000,33(7):2561-2572.
    [16]Desbaumes L,Eisenberg A.Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer,Langumir,1999,15(1):36-38.
    [17]Yu Y,Zhang L,Eisenberg A.Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers,Macromolecules,1998,31(4):1144-1154.
    [18].Burke S E,Eisenberg A.Kinetics and mechanisms of the sphere-to-rod and rod-to sphere transitions in the ternary system PS310-b-PAA52/dioxane/water Langmuir,2001,17(21):6705
    [19].Chen L,Shen H,Eisenberg A.Kinetics and mechanism of the rod-to-vesicle transition of block copolymer aggregates in dilute solution.J.Phys.Chem.B.,1999,103(44):9488
    [20].Burke S E,Eisenberg A.Kinetic and mechanistic details of the vesicle -to-rod transition in aggregates of PS310-b-PAA52 in dioxane-water mixtures.Polymer,2001,42(21):9111
    [21].Goh.ECC,Stover HDH,Cross-linked poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization:a morphology study,Macromolecules.2002(35) 9983-9989.
    [22]朱路,微结构环交联型聚膦腈材料的制备与表征,上海交通大学博士学位论文,2007
    [1]Iijima S.,Helical microtubules of graphitic carbon,Nature 1991;354:56-8.
    [2]Iijima S,Ichihashi T.,Single-shell carbon nanotubes of 1-nmdiameter,Nature 1993;363:603-5.
    [3]Blackburm JL,Yan Y,Engtrakul C,Parilla PA,Jones K,Gennett T,et al.,Synthesis and Characterization of Boron-doped Single-wall Carbon Nanotubes Produced by the Laser Vaporization Technique,Chem.Mater.2006;18:2558-66.
    [4]Bondi SN,Lackey WJ,Johnson RW,Wang X,Wang ZL.,Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization,Carbon 2006;44:1393-403.
    [5]Basca RR,Laurent C,Peigney A,Basca WS,Vaugien T,Rousset A.,High Specific Surface Area Carbon Nanotubes from Catalytic Chemical Vapor Deposition Process,Chem.Phys.Lett.2000;323:566-71.
    [6]Moreno JMC,Yoshimura M.,Hydrothermal processing of high-quality multiwall nanotubes from amorphous cartbon,J.Am.Chem.Soc.2001;123:741-2.
    [7]Kang ZH,Wang EB,Gao L,Lian SY,Jiang M,Hu CW,et al.,One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite,J.Am.Chem.Soc.2003;125:13652-3.
    [8]Zhang XY,Manohar SK.,Microwave Synthesis of Nanocarbons from Conducting Polymers,Chem.Commun.2006;23:2477-9.
    [9]Hulicova D,Hosoi K,Kuroda S,Abe H,Oya A.,Carbon Nanotubes Prepared by Spinning and Carbonizing Fine Core-Shell Polymer Microspheres,Adv.Mater.2002;14:452-5.
    [10]Hulicova D,Oya A.,Polymer Blend Technique as a Method to Design Fine Carbon Materials,Carbon 2003;41:1443-50.
    [11]Tan E.P.S.,Lim C.T.,Mechanical characterization of nanofibers—A review,Composites science and technology,2006,66,1099-1108.
    [12]Chun,I,Reneker,D H,et al.,Carbon nanofibers from Polyacrylonitrile and mesophase pitch,Advanced Materials,1999,31:36.
    [13]Wang Y,Serrano S,Santiago-Aviles J J,Raman characterization of carbon nanofibers prepared using electrospinning,Synthetic Metals,2003,138:423.
    [14]Jang J,Bae J,Park E,Polyacrylonitrile Nanofibers:Formation Mechanism and Applications as a Photoluminescent Material and Carbon-Nanofiber Precursor,Adv.Funct.Mater,2006,16,1400-1406.
    [15]Chen Y,Wang Z L,Yin J S,et al.,Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition,Chemical Physics Letters,1997,272:178.
    [16]Ishioka M,Okada T,Matsubara K,Formation of vapor-grown carbon fibers in CO-CO2-H2 mixtures,I.I fluence of carrier gas composition,Carbon,1992,30:859.
    [17]Zou G F,Zhang D W,Dong C,Li H,Xiong K,Fei L F,Qian Y T,Carbon nanofibers:Synthesis,characterization,and electrochemical properties,Carbon,2006,44,828-832.
    [18]Zheng R T,Zhao Y,Liu H P,Liang C L,Cheng G A,Preparation,characterization and growth mechanism of platelet carbon nanofibers,Carbon,2006,44,742-746.
    [19]Motojima S,Hasegawa I,Kagiya S,et al.,Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni cataly st and sulfur or phosphorus compound impurity,Applied Phy sics Letter,1993,62:2322.
    [20]Kroto H W,Heath J R,O'Brien S C,et al.,C60:Buck—minsterfullerence.Nature,1985,318(6042): 162-164.
    [21]Iijima S.Direct observation of the tetrahedral bonding in graphitized carbon-black by high-resolution electron-microscopy,J Cryst Growth,1980,50(3):675-83.
    [22]Ugarte D.Curling and closure of graphitic networks under electron-beam irradiation.Nature,1992,359(6397):707-716.
    [23]Miao J.Y,Hwang D.W,Narasimhulu K.V,et al.Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts.Carbon,2004,42(4):813-822.
    [24]Qian H.S,Han RM,Zhang B,et al.Noncatalytic CVD preparation of carbon spheres with a specific size.Carbon,2004,42(4):761-766.
    [25]Kamegawa K,Yoshida H.Preparation and characterization of swelling beads.Carbon,1997,35(5):631-639.
    [26]Pol V G,Motiei M,Gedanken A,et al.Carbon properties and mechanistic elucidation.Carbon,2004,42(1):111-116.
    [27]Qiu J.S,Li Y F,Wang YP,et al.A novel form of carbon micro-balls from coal,Carbon 2003,41(4):767-772.
    [1].Hu,J.;Odom,T.W.;Lieber,C.M.,Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes,Acc.Chem.Res.1999,32,435-445.
    [2].Favier,F.;Walter,E.C.;Zach,M.R;Benter,T.;Penner,R.M.,Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays,Science 2001,293,2227-2231.
    [3].Xia,Y.N.;Yang,P.D.;Sun,Y.G;Wu,Y.Y;Mayers,B.;Gates,B.;Yin,Y.D.;Kim,F.;Yan,H.Q.,One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater.2003,15,353-389.
    [4].Chen,J.G;Wiley,B.J.;Xia,Y.N.,Our feature article on the synthesis of one-dimensional nanowires of metals,Langmuir 2007,23,4120-4129.
    [5].Cui,Y.;Wei,Q.Q.;Park,H.K.;Lieber,C.M.,Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,Science 2001,293,1289-1292.
    [6].K.Zou,X.H.Zhang,X.F.Duan,X.M.Meng,S.K.Wu,Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation,Journal of Crystal Growth,273(2004) 285-291.
    [7].Li,Z.Y.;Huang,H.M.;Wang,C.,Electrostatic forces Induce Poly(vinyl alcohol)-protected copper nanoparticles to form copper/poly(vinyl alcohol) nanocables via electrospinning,Macromol.Rapid Commun.2006,27,152-155.
    [8].K.Huang,Y.Zhang,Yunze Long,J.Yuan,D.Han,Z.Wang,L.Niu,and Z.Chen,"Self-assembled preparation of highly conductive gold/polyaniline nanocables and polyaniline nanotubes",Chemistry-A European Journal 12,5314-5319(2006)
    [9].Feng,X.;Huang,H.;Ye,Q.;Zhu,J.;Hou,W.,Ag/Polypyrrole Core-Shell Nanostructures:Interface Polymerization,Characterization,and Modification by Gold Nanoparticles,J.Phys.Chem.C 2007,111,8463.
    [10].Zhu,L.;Xu,Y.Y.;Yuan,W.Z.;Xi,J.Y.;Huang,X.B.;Tang,X.Z.;Zheng,S.X.,One-pot synthesis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via an in situ template approach,Adv.Mater 2006,18,2997-3000.
    [11].D.M.Guldi,G.M.A.Rahman,F.Zerbetto and M.Prato,Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites,Acc.Chem.Res.,2005,38,871-878.
    [12].N.Grossiord,J.Loos,O.Regev and C.E.Koning,Toolbox for Dispersing Carbon Nanotubes into Polymers To Get Conductive Nanocomposites,Chem.Mater.,2006,18,1089-1099.
    [13].H.J.Dai,Carbon Nanotubes:Synthesis,Integration and Properties,Acc.Chem.Res.,2002,35,1035-1044.
    [14].D.Tasis,N.Tagmatarchis,A.Bianco and M.Prato,Chemistry of carbon nanotubes,Chem.Rev.,2006,106,1105-1136.
    [15].H.Kong,C.Gao and D.Y.Yan,Controlled Functionalization of Multi-Walled Carbon Nanotubes by in situ Atom Transfer Radical Polymerization J.Am.Chem.Soc.,2004,126,412-413.
    [16].C.Y.Hong,Y.Z.You and C.Y.Pan,Functionalized Multi-walled Carbon Nanotubes with Poly(N-(2-hydroxypropyl)methacrylamide) by RAFT Polymerization J.Polym.Sci.,Part A:Polym.Chem.,2006,44,2419-2427.
    [17].X.Lou,C.Detrembleur,C.Pagnoulle,R.Jerome,V.Bocharova,A.Kiriy and M.Stamm,Surface Modification of Multiwalled Carbon Nanotubes by Poly(2-vinylpyridine):Dispersion,Selective Deposition,and Decoration of the Nanotubes Adv.Mater,2004,16,2123-2127.
    [18].J.Y.Choi,S.J.Oh,H.J.Lee,D.H.Wang,L.S.Tan and J.B.Baek,in-situ grafting of hyperbranched poly(ether ketone)s onto multiwalled carbon nanotubes via the a3+b2 approach Macromolecules,2007,40,4474-4480.
    [19].W.Z.Yuan,J.Z.Sun,Y.Q.Dong,M.Halussler,F.Yang,H.P.Xu,A.J.Qin,J.W.Y.Lam,Q.Zheng and B.Z.Tang,Wrapping Carbon Nanotubes in Pyrene-Containing Poly(phenylacetylene) Chains:Solubility,Stability,Light Emission,and Surface Photovoltaic Properties,Macromolecules,2006,39,8011-8020.
    [20].W.Z.Yuan,J.Z.Sun,J.Z.Liu,Y.Dong,Z.Li,H.P.Xu,A.Qin,M.Haussler,J.K.Jin,Q.Zheng and B.Z.Tang,Processable Hybrids of Ferrocene-Containing Poly(phenylacetylene)s and Carbon Nanotubes:Fabrication and Properties,J.Phys.Chem.B.,2008,112,8896-8901.
    [21].P.Petrov,F.Stassin,C.Pagnoulle and R.Jerome,Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers,Chem.Commun.,2003,23,2904-2905.
    [22].X.D.Lou,R.Daussin,S.Cuenot,A.S.Duwez,C.Pagnoulle,C.Detrembleur,C.Bailly and R.Jerome,Chiral Zeolitic Materials:Structural Insights and Synthetic Challenges,Chem.Mater,2004,16,4005-4112.
    [23].B.Olalde,J.M.Aizpuma,A.Garcia,I.Bustero,I.Obieta and M.J.Jurado,Single-Walled Carbon Nanotubes and Multiwalled Carbon Nanotubes Functionalized with Poly(l-lactic acid):a Comparative Study,J.Phys.Chem.C.,2008,112,10663-10667.
    [24].B.Yi,R.Rajagopalan,H.C.Foley,U.J.Kim,X.M.Liu and P.C.Eklund,Catalyic polymerization and facile grafting of poly(furfurylalcohol) to single wall nanotube:preparation of nanocomposite carbon,J.Am.Chem.Soc.,2006,128,11307-11313.
    [25].Y.J.Kang and T.A.Taton,Micelle-Encapsulated Carbon Nanotubes:A General Route to Nanotube Composites,J.Am.Chem.Soc.,2003,125,5650-5651.
    [26].H.L.Zeng,C.Gao and D.Y.Yan,Poly(ε-caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties,Adv.Funct.Mater,2006,16,812-818.
    [27]Hasegawa T,Mukai S R,Shirato Y,et al.Preparation of carbon gel microspheres containing silicon powder for lithiumion battery anodes,Carbon,2004,42(12-13):2 573-2 579.
    [28]Endo M,Kim C,Nishimura K,et al.Recent development of carbon materials for Li ion batteries,Carbon,2000,38(2):183-197.
    [29]Li H,Huang X J,Chen L Q,et al.The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature,Solid State Ionics,2000,135(124):181-191.
    [30]Wen Z S,Yang J,Wang B F.High capacity silicon/carbon composite anode materials for lithium ion batteries,Electrochemistry Communications,2003,5(2):165-168.
    [31]戴贵平,刘敏,王茂章,等电化学电容器中炭电极的研究及开发Ⅰ.电化学电容器,新型炭材料,2002,17(1):71-79.
    [32]蒲薇华,任建国,万春荣,等军用锂离子电池及负极材料研究进展,电池,2003,33(4):249-251.
    [33]Winter M,Besenhard J O.Electrochemical lithiation of tin and tin-based intermetallics and composites,Electrochimica Acta,1999,45(1-2):31-50.
    [34]Wang C S,John A A,Little F E.Electrochemical study on nano-Sn,Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes,J Power Sources,2001,93(1-2):174-185.
    [35]Wachtler M,Besenhard J O,Winter M.Tin and tin-based intermetallics as new anode materials for lithium-ion cells,J Power Sources,2001,94(2):189-193.
    [36]Bourderau S,Brousse T,Schleich D M.Amorphous silicon as a possible anode material for Li-ion batteries,J Power Sources,1999,8(81-82):233-236.
    [37]Jung H,Park M,Yoon Y G,et al.Amorphous silicon anode for lithium-ion rechargeable batteries,J Power Sources,2003,115(2):346-360.
    [38]Dong Q F,Wu C Z,Jin M G,et al.Preparation and performance of nickel-tin alloys used as anodes for lithium-ion battery,Solid State Ionics,2004,167(1-2):49-54.
    [39]Wang G X,Sun L,Bradhurst D H,et al.Innovative nanosize lithium storage alloys with silica as active centre,J.Power Sources,2000,88(2):278-281
    [40]Piao T H,Park S M,Doh C H,Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements,J.Electrochem.Soc.,1999,146:2794-2798
    [41]Chang Y C,Sohn H J,Electrochemical impedance analysis for lithium ion intercalation into graphite carbons,J.Electrochem.Soc.,2000,147:50-58
    [42]Wang G X,Yao J,Liu H K,Characterization of Nanocrystalline Si-MCMB Composite Anode Materials,Electrochemical and Solid-State Letters,2004,7(8):A250-A253
    [43]Dimov N,Kugino S,Yoshio M,Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations,Electrochimica Acta,2003,48:1579-1587
    [44]Kim B C,Uono H,Sato T,et al.,Li-ion battery anode properties of S-carbon nanocomposites fabricated by high energy multiring-typemill,Solid State Ionics,2004,172:33-37
    [45]Huang K L,Zhang G,Liu S Q,et al.Wuji Huaxue Xuebao,(Chinese J.Inorg.Chem),2006,22(11):2075-2079
    [46]He Z Q,Xiong L Z,Xiao Z B,et al.Wuji Huaxue Xuebao(Chinese J.Inorg.Chem.),2006,22(2):254-257
    [47]Kim S,Blomgren G E,Kumta P N.Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling,J Power Sources,2004,130(1-2):275-280.
    [48]Dimov N,Fukuda K,Umeno T,et al.Characterization of carbon-coated silicon:structural evolution and possible limitations,J Power Sources,2003,114(1):88-95.
    [49]Wilson A M,Zank G,Eguchi K,et al.Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries,J Power Sources,1997,68(2):195-200.
    [50]王保峰,杨军,解晶莹,等.锂离子电池用硅/碳复合负极材料,化学学报,2003,61(10):1572-1576.
    [51]Larcher D,M udalige C,George A E.Si-containing disordered carbons prepared by pyrolysis of pitch-polysilane blends:effect of oxygen and sulphur,Solid State Ionics,1999,122(1-4):71-83.
    [52]张勇,刘畅,李峰,等.纳米碳管结构差异对树脂炭包覆硅/纳米碳管复合材料电化学性能的影响,新型炭材料,2006,21(4):307-314.
    [53]Wilson A M,Reimers J N,Fuller E W,et al.Lithium insertion in carbons containing nano-dispersed silicon,J Electrochem Soc,1995,142(1):326-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700