采用APF与SVC改善微网电能质量的策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电代表着21世纪电力能源的发展方向,它可以增加系统的供电能力、降低对环境的污染、提高电力系统的可靠性和经济性。研究分布式发电的运行技术和改善其电能质量具有重要的实际意义。
     分布式电源和负荷作为一个整体,形成可控的、既可并网运行也可以孤岛运行的小电网,称为微电网。微网的引入既补充了电网的供电模式,也给电力系统带来了其它问题,如:分布式电源一般需要通过逆变器和变压器接入电网,逆变器的接入会向配电网引入大量谐波;微电源本身也会造成如电压波动、功率因数偏低等电能质量问题。微网中如果存在无功需求较大的微源或者负荷,还需要实现无功的就地补偿,以保持电压的稳定。根据分布式电源本身和负荷对供电的要求,必须对微网采取一定的改善电能质量的措施。
     有源电力滤波器(APF)是配网中常见的滤波和无功补偿装置,一般采用瞬时无功检测法检测谐波电流,APF可以实现谐波和无功电流的动态跟踪和补偿,反应速度快,滤波效果好。APF控制比较复杂,投资较大,且有容量限制,在无功需求量大的系统中如果完全使用APF作为补偿器件,从经济性角度考虑是不太合适的。SVC作为配网中常用的无功补偿装置,能够快速、平滑地调节无功功率,满足动态无功补偿的需要,具有价格低廉、补偿容量大的优势。本文考虑在微网中应用APF和SVC联合系统,APF装设在分布式电源出口进行滤波并进行小容量的无功电流补偿,SVC装设在负荷侧实现大容量无功的就地补偿。APF可以实现快速跟踪补偿,弥补SVC对快速变化功率反应较慢的缺点。SVC可以弥补APF补偿容量不足的缺点,两者互为补充。采用Matlab-Simulink搭建了各种电力器件和电网系统的模型,分别对联网模式和孤岛模式下的控制方法进行了仿真,实现了各自的有效控制。在此基础上添加APF和SVC联合系统对电能质量进行改善,仿真证明APF+SVC联合系统能很好的改善电能质量。
Distributed generation represents the development direction of the electric energy in the 21st century. Distributed generation can increase the supply ability of the power system; reduce pollution to the environment; improve the reliability and efficiency of the power system. Studies of the distributed power generation technology and improving DG’s electric power quality have important practical significance.
     Micro electric gird is a system including the distributed generation and the load as a unity. It’s a controllable system which can be operated both in the interconnected mode and islanding mode. The introduction of the Micro gird supplement the modes of operation of the power grid, but at the same time, it brings a lot of problems, for example, DGs usually access to the grid through inverters and transforms, the inset of the inverters bring plenty of harmonics to the distributing grid; The DG itself can also cause problems such as voltage fluctuation and low power factor. If there exists Micro source or load which has big reactive power demands in the Micro grid, the on-spot compensation of the reactive power is needed to keep the voltage’s stability. According to the demands of the distributed generations themselves and the loads, measures must be taken to improve the electric quality of the Micro grid.
     APF is a devices widely used in the distributing gird for harmonic filtering and reactive power compensation. It usually adopts the Instantaneous Reactive Power Theory for harmonic detection.APF can realize the dynamic tracking and compensation of the harmonic and reactive current; it has fine filtering effect due to its quick response. The controlling of APF is relatively complex. Which more, the investment of APF is often expensive while comparing with its capacity. So it’s not a suitable choice from the economic consideration if we use APF as the only compensation device in the power grid which has big demands for reactive power compensation.SVC is a common device for reactive power compensation in the distributing grid which has superior in low price and big capacity. It can adjust the reactive power quickly and smoothly, satisfy the need of dynamic reactive power compensation. In this paper, an APF-SVC combination system is introduced in the Micro gird, APF is installed at the export of the DG to fulfill the function of harmonic filtering and compensation of small volume of reactive current. SVC is installed at the side of the load for on-spot reactive power compensation. APF’s quick response can offset the weakness that SVC has slow response to rapid-changing power needs while SVC can make up for the defect that APF has small compensation capacity. Matlab– Simulink is used to build the modes of the electrical devices and power system. Both the control methods in networking mode and island mode are simulated and realize their effective control. On the basis, APF-SVC combination system is introduced to improve the electric quality. Simulation results prove APF-SVC combination system can improve power quality commendably.
引文
[1]殷桂梁,杨丽君,王珺,分布式发电技术,北京:机械工业出版社,2008,1~5
    [2]唐亮,分布式电源的分类以及对配电网的影响:[硕士学位论文],合肥;合肥工业大学,2007
    [3]2000-2015年新能源和可再生能源产业发展规划要点,国家经贸委资源节约与综合利用司(2000/8/23)
    [4]李超,钱虹,叶建华,分布式电源及其并网技术,上海电力学院学报,2008,24(3),277~281
    [5] Stavros Papathanassiou,Nikos Hatziargyriou,Kai Strunz,A BENCHMARK LOW VOLTAGE MICROGRID NETWORK,IEEE
    [6]韩民晓,刘讯,分布式电源并网中电能质量相关规范探讨,电力设备,2007,8(1):57~60
    [7]雷之力,鲁希娟,微网电能质量特点及有源滤波补偿方式研究综述,湖南电力,2009,29(5),59~62
    [8]胡成志,分布式电源接入系统的研究:[硕士学位论文],重庆;重庆大学,2005
    [9]李超,钱红,叶建华,分布式电源及其并网技术,上海电力学院学报,2008,24(3):277~281
    [10]董密,太阳能光伏发电并网发电系统的优化设计与控制策略研究:[博士学位论文],长沙:中南大学,2007
    [11]曾婧婧,杨平,徐春梅,等,风力发电控制系统研究,PROCESS AUTOMATION INSTRUMENTATION,2006,27(5),32~34
    [12]裴郁,我国可再生能源发展战略研究:[硕士学位论文],沈阳;辽宁师范大学,2001
    [13]胡利华,燃料电池发电系统应用分析:[硕士学位论文],重庆;重庆大学,2005
    [14]殷桂梁,刘宇明,基于分布式发电的微型涡轮发电机系统建模和仿真,燕山大学学报,2008,12(3),1~4
    [15]王燕,分布电源联网接口逆变电路控制技术的研究:[硕士学位论文],北京;华北电力大学,2007
    [16]纪明伟,分布式发电中微电网技术控制策略研究:[硕士学位论文],合肥;合肥工业大学,2009
    [17]陈琳,分布式发电接入电力系统若干问题的研究:[博士学位论文],杭州;浙江大学,2007
    [18]王成山,高菲,李鹏,等,可再生能源与分布式发电接入技术欧盟研究项目述评,南方电网技术,2008,2(6),1~6
    [19]王振铭,中国热电联产与分布式能源的新发展,沈阳工程学院学报,2006,2(1),1~5
    [20]江南,分布式电源对电网谐波分布的影响及滤波方法研究,[硕士学位论文],杭州;浙江大学,2007
    [21]吴婷婷,分布式发电系统并网逆变器控制方法研究:[硕士学位论文],西安;长安大学,2007
    [22]姜齐荣,赵东元,陈建业,有源电力滤波器,北京:科学出版社,2005,48~57
    [23]何仰赞,温增银,电力系统分析(下),武汉,华中科技大学出版社,2002,77~91
    [24]丁明,王敏,分布式发电技术,电力自动化设备,2004,24(7),31~36
    [25]李建林,赵栋利,李亚西,等,几种适合变速恒频风力发电机并网方式对比分析,电力建设,2006,27(5):8~10
    [26]罗建中,分布式微型电网并网研究:[硕士学位论文],长沙,湖南大学,2009
    [27]鲁宗相,王彩霞,阂勇,等,微电网研究综述,电力系统自动化,2007,31(19),100~106
    [28]摆士彬,微型电网控制技术的研究,[硕士学位论文]:天津,天津大学,2008
    [29]郭力,王成山,含多种分布式电源的微网动态仿真,电力系统自动化,2009,33(2),82~86
    [30]王成山,肖朝霞,王守相,微网中分布式电源逆变器的多环反馈控制策略,电工技术学报,2009,24(2),100~107
    [31]鞠洪新,分布式微网电力系统中多逆变电源的并网控制研究:[博士学位论文],合肥,合肥工业大学,2006
    [32]吴子平,基于微型燃气轮机发电系统的微网控制与分析:[硕士学位论文],北京;华北电力大学,2009
    [33]Alfred Engler,Nikos Soultanis,Droop control in LV-Grids,IEEE
    [34]王成山,肖朝霞,王守相,微网综合控制与分析,电力系统自动化,2008,32(7):98~102
    [35]苏玲,张建华,苗唯时,等,微型燃气轮机微网控制策略,高电压技术,2010,36(2):513~519
    [36]杨仁花,基于风力发电机的微网运行控制的仿真研究:[硕士学位论文],北京;华北电力大学,2009
    [37]LI GUO,CHENGSHAN WANG,LINGXU GU,etc,Dynamical Characteristic ofMicroGrid with Peer to Peer Control,Distributed power generation and integration technology,2008,1~7
    [38]D. Georgakisl,S. Papathanassiou',N. Hatziargyriod,etc,Operation of a prototype Microgrid system based on micro-source equipped with fast-acting power electronics interfaces,35th Annual IEEE Power Electronics Specialists Conference,IEEE,2004,2521~2526
    [39]Tzung-Lin Lee,Po-Tai Cheng,Design of a New Cooperative Harmonic Filtering Strategy for Distributed Generation Interface Converters in an Islanding Network ,IEEE TRANSACTIONS ON POWER ELECTRONICS,IEEE,2007,22(5),1919~1927
    [40]王金星,电力系统有源滤波器的设计与仿真:[硕士学位论文],天津;天津大学,2000
    [41]王党帅,有源电力滤波器谐波与无功电流检测方法的研究:[硕士学位论文],西安,西安理工大学,2008
    [42]华晓萍,三相并联电压型有源电力滤波器的研究:[硕士学位论文],成都;西南交通大学,2003
    [43]高大威,孙孝瑞,有源电力滤波器的延时特性对补偿效果影响的研究,电力系统及其自动化学报,2001,13(8),28~31
    [44]杨用春,赵成勇,李广凯,并联型APF的一种简单PI补偿控制方法,南方电网技术,2009,3(6),52~55
    [45]杜继伟,王胜刚,静止无功补偿器对电力系统性能改善的综述,继电器,2007,35(22),82~85
    [46]宗振鹏,电网无功功率分析与补偿器的研究:[硕士学位论文],沈阳,沈阳工业大学,2008
    [47]许胜,基于DSP的TCR型SVC控制器的研究与设计:[硕士学位论文],南京,南京理工大学,2005
    [48]张爱国,SVC装置的Simulink实现和仿真,科技综述,2007,35(5),55~58
    [49]朱金奇,TCR+FC型SVC原理及应用,电气传动自动化,2007,29(3),57~59
    [50]姜齐荣,谢小荣,陈建业,电力系统并联补偿——结构、原理、控制与应用,北京,机械工业出版社,2004,
    [51]陈青,高压直流输电弱受端系统SVC控制策略的研究:[硕士学位论文],北京,华北电力大学,2008
    [52]张志文,梁英,李勇,等,新型SVC无功功率检测及滤波器的优化设计,电力系统及其自动化学报,2009,21(6):51~55
    [53]林飞,杜欣,电力电子应用技术的MATLAB仿真,北京:中国电力出版社,2009,148~157
    [54]陈坚,电力电子学——电力电子变换和控制技术,北京,高等教育出版社,2002,
    [55]Gao Xiaozhi,Li Linchuan,Chen Wenyan,A Combined System for Power Quality Improvement in grid-parallel Micro grids,LSMS & ICSEE 2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700