杯状病毒分子流行病学及病原与宿主互作机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杯状病毒科(Caliciviridae)包含4个属,分别为:诺如病毒(Norovirus,NoV)、札幌病毒(Sapovirus,SaV)、囊病毒(Vesivirus)及兔出血热病毒(Lagovirus)。属单股正链RNA病毒,直径约27-40nm,无包膜,衣壳呈二十面体对称结构。杯状病毒科中NoV和SaV为主要的医学病原,均能引发急性胃肠炎;而囊病毒和兔出血热病毒为动物源性病原,其中的猫杯状病毒和兔出血热病毒分别引发猫呼吸系统疾病和兔的致命性出血性疾病。
     NoV是导致人急性肠胃炎的最主要的非细菌性感染源之一,经常导致家庭和社区性的爆发流行;而SaV致病性较弱,感染率较低,主要感染对象为婴幼儿。除了人群,NoV和SaV也在猪、鼠、水貂等多种动物里被检测到,这也引发了二者是否均为人畜共患病病原的讨论。
     杯状病毒的研究起步较晚,虽然已经取得了很大的进展,但还存在很多问题有待解决。
     1中国人及猪杯状病毒分子生物学研究
     我国人杯状病毒的研究起步较晚,1995年才首次开始研究,实际上,在我国大部分地区都存在该病毒的感染和发病,过去由于未列入常规检测项目或报告项目,对该病毒感染和发病的状况不甚了解。因此有必要对我国的人杯状病毒分子流行病学情况进行系统研究。
     除了流行病学特性,对我国诺如病毒的分子生物学特征,例如病毒的全基因结构、重组和进化等方面还知之甚少。另外,我国动物群体中特别是跟人类关系密切的猪群中的杯状病毒的流行情况等基本处于空白。而越来越多的证据显示,杯状病毒存在着跨种间传播的风险。因此,动物源杯状病毒的研究对人杯状病毒的防控,预警机制建立等都具有重要意义。目前我国对札幌病毒的重视程度不够,流行病学情况、分子生物学特征、致病机制及危害、病毒进化与重组等了解不多,因此,对以上各方面均有必要进行深入研究。
     2致病机理与动物模型
     目前对杯状病毒的研究主要集中于流行病学研究,对病毒的感染、致病机制,物种与组织嗜性,靶细胞受体,在细胞内的复制过程等基础研究相对较少。由于杯状病毒除极个别毒株外一般都难以体外培养,极大地制约了相关研究的进展。而动物模型是研究致病机理的有效手段之一。因此,采用动物模型模拟疾病的发生对杯状病毒感染、致病机制乃至跨种间传播预测等具有重要意义。
     3 SaV的受体研究
     病毒受体是公认的引发病毒感染宿主细胞的主要决定因素,也是影响病毒宿主特异性和组织亲嗜性的决定因素之一。因此,鉴定SaV受体及其特性与功能,对于从分子水平阐明病毒感染与免疫的机制,深刻理解病毒与宿主细胞的相互关系,病毒的跨种间感染风险预测,疫苗、诊断试剂的研制等,都具有重大的理论与实践意义。有研究显示,人诺如病毒的受体可能为人类血型组织抗原(histo-blood group antigens,HBGA)。为鉴定SaV的受体是否也为HBGA,Jiang等采用杆状病毒表达系统表达了人源SaV的病毒样颗粒,并测试了它们之间的结合能力。结果发现这些病毒样颗粒不能与HBGA结合,从而排除了HBGA作为SaV受体的可能性。目前,札幌病毒的受体依然未知。
     有鉴于此,本研究主要从杯状病毒的分子流行病学、动物模型建立、病毒样颗粒的表达、病毒与宿主细胞的互作机制等方面开展研究,
     结果如下:
     一杯状病毒的分子流行病学研究
     1中国大陆发现猪SaV导致仔猪腹泻
     2008年2月上海郊区某规模化生猪养殖场发生仔猪腹泻,两窝仔猪中7只仔猪发生,剩余12只仔猪正常。采集上述腹泻粪便样品和正常仔猪粪便样品,同时从该猪场和邻近猪场分别采集正常粪便标本20和80份。根据腹泻仔猪症状和粪便外观观察,初步排除常见细菌性腹泻可能。通过PCR或RT-PCR检测了PCV、PRC、TGEV、PEDV、猪NoV和猪SaV等常见或者新发的能够导致仔猪腹泻的病毒。结果显示,除SaV为,其它病毒均为阴性。为证实仔猪腹泻是否由SaV感染引起,我们进行了动物回归实验。动物实验结果表明,猪SaV病毒阳性粪便悬液能够导致仔猪腹泻和呕吐,并且能够在实验组仔猪的粪便样品中持续检测到病毒。
     2华东地区猪杯状病毒分子流行病学研究
     到目前为止,各国猪群中尚无关于杯状病毒的系统性研究。为研究猪群中杯状病毒的感染情况,本实验从中国华东地区(上海、江苏、安徽)采集猪新鲜粪便样品,进行分子流行病学检测和分子系统进化分析,并对不同月龄的感染率进行统计分析。结果显示,中国猪群中存在上述两种病毒的感染,SaV和NoV的感染率分别为0.9%(8/904)和0.2%(2/904)。序列分析显示,猪SaV分离株均属GIII,并可进一步分为两个遗传簇。它们分别与荷兰和韩国的猪SaV分离株同源性最近,这暗示,它们可能分别与这两个毒株有着相同的遗传起源。统计结果显示,小于1月龄的仔猪的感染率显著高于1月龄以上的猪的感染率(P<0.05)。本研究表明,中国华东地区猪群中存在猪NoV的感染,但感染率很低,并非该地区的主要病毒性感染源。
     3贵州地区猪杯状病毒和戊型肝炎病毒分子流行病学研究
     为研究我国西南地区的杯状病毒和戊型肝炎病毒(HEV)的分子流行情况,2009年5-6月,从贵州省6个规模化生猪养殖场随机采集猪新鲜粪便样品209份,用RT-PCR方法进行上述病毒的检测和分子进化分析。HEV和SaV的猪场阳性率分别为83%(5/6)和33%(2/6),未检测到NoV。另外,未发现HEV和SaV共感染。HEV和猪SaV的总体阳性率分别为6.7%(15/209)和1.0% (2/209)。进化分析结果显示,这10株HEV毒株均为G4。它们之间的核酸同源性为90%-99%,与邻近省份广西的一株人HEV分离株(AF103940)聚为一支,同源性为92%-%94%。两株SaV均为GIII,它们之间的核酸同源性为96%,与一支巴西分离株同源性最高(91%),与中国华东地区的分离株(FJ374683)同源性只有82%-84%。这表明,尽管感染率较低,但贵州地区的猪群中存在猪SaV的感染。
     4中国猪SaV代表毒株全基因组分析
     研究显示有些毒株(如Sapovirus pig/43/06-18p3/06/ITA)在序列上与人的SaV毒株非常接近,这提示猪SaV有可能是人SaV感染的病原之一。为研究中国猪SaV毒株的分子生物学特征,对首支中国分离株进行了全基因组克隆与分析。结果表明,该毒株(Ch-sw-sav1)基因组序列不含3′poly(A)结构全长为7541 nt, A、C、G、U的所占的比重分别为19%、14.3%、33.3%和33.3%。5′末端含有典型的GTG结构。ORF1含有6765 nt(2255aa),编码非结构蛋白和外壳蛋白VP1(544aa)。ORF2长度为516 nt,编码172 aa的小的外壳蛋白VP2(图1A)。ORF1编码的多聚蛋白包括2C解螺旋酶(2C helicase,GPPGIGKT),3C蛋白酶(3C protease,GDCG),RdRp(GLPSG和YGDD),这些非结构蛋白在所有杯状病毒中均高度保守。在VP1区中同样含有PPG模块。基于全基因组序列的分析显示,本毒株属于GIII SaV。基于ORF2 3′末端的对比结果显示,本分离株含有一个21 nt插入片段。
     5上海地区门诊儿童的人杯状病毒感染情况调查及基因重组分析
     本研究从上海某三甲医院采集门诊儿童粪便样品452份,用RT-PCR方法检测人杯状病毒的感染情况,并对阳性毒株进行系统进化分析。选取代表性毒株进行全基因组克隆,用相关软件进行系统进化和重组分析。452份儿童粪便样品中有20份呈NoV RNA阳性,总体阳性率为4.4%,无SaV阳性粪样检出。20份NoV阳性样品的PCR产物的测序结果显示20个毒株中19株序列彼此不完全相同。它们之间的同源性为79.5%-98.8%。进化分析显示,这19株序列均为GII,并聚集为3个遗传簇(clusters)。其中两个遗传簇为GII-4,另外一个为GII-3。为分析这些毒株的分子特征,从3个遗传簇中分别选取一个代表性毒株进行全基因组克隆和基因重组分析。结果证明,HU/GII/SHANGHAI/SH312/2008/CHN毒株为重组毒株。
     二猪SaV小型猪感染模型的建立
     本研究采用分离的猪SaV中国株Ch-sw-sav1为攻毒株,通过口服感染SPF级巴马小型猪,通过收集感染后临床症状、病理变化的相关信息以及各组织器官中病原的RT-PCR检测,掌握猪SaV感染猪的第一手资料,为疾病感染机制的研究奠定了基础。结果显示,攻毒后第二天实验组猪即出现不同程度腹泻,个别猪出现呕吐现象。剖检结果显示,实验组猪出现腹胀、小肠出血现象。病理切片的光镜检测结果表明:小肠绒毛萎缩、脱落;透射电镜显微观测表明:小肠上皮细胞细胞核或线粒体病变。间接免疫荧光显示,在小肠各段能检测到病毒抗原的存在。血常规检测结果显示,与对照组和空白组相比,实验组猪在攻毒后白细胞上升,第14天达到最高值,随后开始下降;血小板在攻毒第21天急剧上升,然后缓慢下降;与对照组和空白组相比,实验组猪红细胞没有明显变化。RT-PCR结果显示,实验组猪从攻毒第二天即开始排毒,直至实验结束(PID36)。
     三猪SaV靶细胞受体初步研究
     1连接黏附分子1作为猪SaV受体的可能性研究
     杯状病毒中的NoV和猫杯状病毒(feline calicivirus,FCV)的功能性受体分别为人类血型组织抗原(histo-blood group antigens,HBGAs)和连接黏附分子1(junctional adhesion molecule 1,JAM-1)。已有的研究数据均显示识别碳水化合物可能是杯状病毒的共同特征,尽管在长期的进化过程中不同杯状病毒已适应了不同的宿主细胞。对此,研究人员分别测试了NoV和SaV与HBGAs间的结合能力。结果显示,NoV的VLPs能够与HBGAs结合,而SaV GI和GV的VLPs均不能结合HBGAs。为检验JAM-1作为GIII SaV受体的可能性,我们测试了抗JAM-1多抗对SaV病毒感染易感细胞LLC-PK的阻断效果。在病毒感染细胞前用不同浓度抗JAM-1多抗预先与细胞孵育,随后用荧光定量PCR方法检测不同浓度抗体的孵育能否阻断或者降低病毒对细胞的结合和感染。结果显示,JAM-1抗体不能阻断或者降低SaV对易感细胞LLC-PK的感染。这表明,JAM-1作为SaV感染宿主细胞的受体可能性较低。
     2 VOPBA和Co-IP法筛选猪SaV候选受体
     本研究拟采用VOPBA法和免疫共沉淀法结合质谱探索猪SaV在易感细胞LLC-PK细胞表面受体;采用上述两种方法共鉴定到若干疑似蛋白。根据这些蛋白的细胞内分布和功能结合文献分析,选取MHC-1(major histocompatibility complex class I)进行进一步验证。CO-IP结果显示,MHC-I能够与病毒结合。
     四人NoV病毒样颗粒(Virus-like particles)表达
     本研究采用杆状病毒表达载体进行GII-4和GII-12毒株的VLPs表达,并用Western-blot和免疫电镜方法进行抗原性和形态学鉴定;尝试将外壳蛋白VP1和绿色荧光蛋白(EGFP)融合表达,以期得到带有EGFP标记的病毒样颗粒。研究结果显示,所有的重组杆状病毒均能在Sf9细胞中表达。除了与EGFP融合的蛋白不能成功纯化外,其它均能得到合适浓度的重组蛋白。Western-blot和免疫电镜显示,这些蛋白均具有抗原性并能自我组织形成病毒样颗粒,而GII-12的VLPs能够被抗GII-4 VLPs的抗体所识别。
The family Caliciviridae is composed of small (27 to 40 nm), nonenveloped, icosahedral viruses that possess a linear, positive-sense, single-stranded 7 to 8 kb RNA (ssRNA) genome. They are 27-35 nm in diameter. Caliciviruses were classified into 4 genera in 2002 by the International Committee on the Taxonomy of Viruses (ICTV): Norovirus (NoV), Sapovirus (SaV), Vesivirus, and Lagovirus. The major medical pathogens in the family are NoV and SaV, which cause acute gastroenteritis. Important veterinary pathogens include vesiviruses such as feline calicivirus (FCV), which causes a respiratory disease in cats, and lagoviruses such as rabbit hemorrhagic disease virus (RHDV), which causes an often fatal hemorrhagic disease in rabbits. Human caliciviruses include both human NoV and SaV. Human NoV is believed to be one of the major causes of nonbacterial epidemic gastroenteritis, a disease that usually occurs in family or community-wide outbreaks. The impact of the SaV has not been fully established, but to date they do not share a predominant role with the NoV in epidemic gastroenteritis. Researches showed that both NoV and sapoviruses have been associated with gastroenteritis in infants and young children. Although no inter-species recombinant strain has been found, an inter-genogroup human calicivirus recombinant has been described. Additional, sometimes human strains genetically closely related to the animal strains. Specifically, porcine NoV are genetically closely related to some human NoV in the GII. All of these finding suggests a potential zoonotic risk and pig is considered as an animal reservoir for such viruses.
     Although some of great progress have been made in the research field of caliciviruses, there are still some unclear points, including (1) The interaction mechanism between caliciviruses and host cells; (2) The replication mechanism of caliciviruses in host cell and animal model; (3) Are caliciviruses zoonotic agents; (4) Pathogenesis of caliciviruses; (5) Recombinants between animal and human caliciviruses; (5) The receptor of SaV. In order to elucidate some points mentioned above, we performed the following researches:
     1 Study of molecular epidemiology of caliciviruses
     (1) The first Chinese porcine sapovirus strain that contributed to an outbreak of gastroenteritis in piglets
     We report the first outbreak of gastroenteritis caused by porcine SaV in piglets in China. This outbreak occurred in February 2008 on a small commercial pig farm that lies in Shanghai suburb. Seven stool specimens were collected from seven piglets which showed symptoms of diarrhea and vomiting in two neighboring farrows on the farm. At the beginning, we first examined the seven specimens from the ill piglets for porcine circovirus, porcine rotavirus, porcine transmissible gastroenteritis virus, and porcine epidemic diarrhea virus using reverse transcription-PCR (RT-PCR), and all specimens showed negative results. All specimens were then examined for SaV by using RT-PCR as described previously. Our results showed that all seven piglets that showed clinical symptoms were positive for SaV RNA, suggesting this outbreak of gastroenteritis may due to porcine SaV infection.
     In order to elucidate whether the fecal samples contained infectious SaV, the eight SaV-positive fecal specimens were used to infect piglets. Results indicated that all of those experimental infection piglets showed symptoms of diarrhea and vomiting, and shed virus after inoculation.
     (2) Molecular detection and prevalence of porcine caliciviruses in eastern China Caliciviruses that causes diarrhea were reported in both industrial and developing countries including China recent years. Porcine caliciviruses closely related to human sapovirus and norovirus were also detected in swine group, which caused discussions about the animal reservoir and the potential risk for zoonotic transmission to humans. The objective of this work was to determine the frequency and distribution in the different age of swine for porcine sapovirus and norovirus, and characterize the strains prevalent in eastern China. A total of 904 stool samples from different ages of pigs were collected from eastern China from April 2008 to March 2009, and tested for both SaVs and NoVs using reverse transcription-polymerase chain reaction (RT–PCR). Our results indicated that 8 (0.9%) stool samples were positive for SaV and 2 (0.2%) for NoV. Phylogenetic analyses based on the partial RNA polymerase gene sequences indicated that all of the SaV isolates belonged to GIII, while the 2 NoV isolates belonged to GII. The 8 SaV isolates were further divided into 2 different groups in the GIII cluster, one of which clustered closely with the Netherland isolate (AY615804) and the other one with the Chinese strain (EU599212). Our results suggested that SaV infection was more frequently (p <0.01) in 0-1 month age of swine than that of other ages. In conclusion, the present study provided evidence that infection of PoSaV and PoNoV existed in pig groups of eastern China.
    
     (3) Prevalence of porcine caliciviruses and Hepatitis E Virus in pig farms of Guizhou province, China
     A total of 209 stool samples from pigs of different age groups were collected from 6 pig farms in Guizhou province from May to June 2009, and tested for HEV, SaV and NoV using reverse transcription-polymerase chain reaction (RT–PCR). The overall prevalence of porcine HEV and porcine SaV were 6.7% (15/209) and 1.0% (2/209), respectively. No NoV infection was detected in the current study. The prevalence rates of porcine HEV infection for different ages of pigs were 15.4% (4/26; piglet, age<1 month), 6.8% (3/44; 4 month 1 month), 12.5% (6/48, age≈4 month), and 1.1% (2/91, sow, 146 month), respectively. Porcine SaV was only detected in piglets (7.7%, 2/26). All 10 HEV isolates in the current study belong to genotype 4, clustering with a human HEV strain (AF103940) isolated from an adjacent province.This is the first report that porcine SaV exists in swine groups of Guizhou province, China. The porcine HEV isolates clustering with a human strain suggests the potential cross-species transmission between swine and human in this area.
     (4) Molecular characterization and phylogenetic analysis of the complete genome of a porcine sapovirus from Chinese swine The whole genome of Ch-sw-sav1 was amplified by RT-PCR and was sequenced. Sequence alignment of the complete genome or RNA dependent RNA polymerase (RdRp) gene was done. 3′end of ORF2 with 21-nt nucleotide insertion was further analyzed using softwares. Sequence analysis indicated that the genome of Ch-sw-sav1 was 7541 nucleotide long with two ORFs, excluding the 17 nucleotides ploy (A) at the 3′end. Phylogenetic analysis based on part of RdRp gene of this strain showed that it was classified into subgroup GIII. Sequence alignment indicated that there was an inserted 21-nt long nucleotide sequence at the 3′end of ORF2. The insertion showed high antigenicity index comparing to other regions in ORF2.
     (5) Prevalence and recombination of NoV in outpatients of Shanghai 452 stool samples from outpatients were collected from Shanghai, China. The fecal samples were tested for human caliciviruses. The full-genome of representative strains were then chosen and determined. Results showed that 20 NoV RNA positive samples were identified and the overall prevalence of NoV was 4.4%. No SaV positive were found in current study. In the present study, three full-length genomes of human NoV from China were determined and the genomic organization and recombination were analyzed. They had similar genome organization and contained three predicted ORFs, though the 5’UTR of those three strains were 2, 4 and 8 nucleotides, respectively. Phylogenetic analysis showed that the HU/GII/SHANGHAI/SH312/2008/CHN strain may be a recombinant of GII-3 capsid and GII-4 polymerase. To confirm the finding and detect the breakpoints where the recombination event occurred, we performed recombination analysis based on the genomic sequences of HU/GII/SHANGHAI/SH312/2008/CHN as the query sequence, and AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3 as the background sequences, using RPD software. Results indicated that the two parental strains were AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3. The breakpoint for this recombination event located at position 5107nt of the genome (in the ORF1 and ORF2 overlap).
     2 The interaction mechanism between SaV and host
     (1) Construction of animal models of porcine SaV infection In this study, 2mL of porcine SaV strain (Ch-sw-sav1) was orally inoculated to 11 Bama miniature pigs. Control group was orally inoculated with 2 mL of PBS. Clinical symptoms were supersied for each day. Piglets in both control group and tested groups were euthanized at 1,2,3,5,7,9,11,14,21,30,36 days post infection (PID) to observe possible pathological changes in heart, liver, spleen, lung, kidney, stomach, different part of intestines and inguinal lymph nodes. Pathological sections were inspected by optimal microscopy indirect immunofluorescence, scanning electron microscope and transmission electron microscopy. Results showed that comparing to control group, experimental groups piglets presented clinical symptoms such as diarrhea and vomiting. Pathological sections showed that mild to severe villous atrophy, mild tomoderate and multifocal villous fusion, and crypt hyperplasia were observed in the small intestine (mainly in the duodenum and jejunum). Viruses were detected by indirect immunofluorescence in epithelial cells of the mucosa. Transmission electron microscopy observations indicated that mitochondria of small intestine and stomach had visible. RT-PCR detection of virus in tissues showed that the piglets shed virus from PID 2 to the end of the experiment (PID36).
     (2) Relationship between porcine SaV and JAM-A
     The available data strongly suggest that the recognition of a carbohydrate receptor may be a common feature of caliciviruses, even though they have adapted to different host species after a long course of evolution. Researches showed that histo-blood group antigens (HBGAs) and junctional adhesion molecule A (JAM-A) were the receptor of NoV and feline calicivirus (FCV), respectively. The binding assay confirmed that SaV VLPs can’t bind the HBGAs molecular. In order to identify the relationship between SaV and JAM-A, rabbit fJAM-A-specific antiserum was used to block the infection. RT-PCR showed that none of the different diluted antiserum can block or decrease the infection, which mean that the JAM-A was not the receptor of SaV.
     (3) Screening the receptor of SaV from LLC-PK cells using VOPBA and Co-IP methods; MHC-I interacts with SaV in vitro To date, the receptor of SaV is still unknown. To screening and identify the receptor, both VOPBA and Co-IP assays were performed to screen interactive proteins from susceptible cell LLC-PK. After screening, target protein bands were determined using Mass Spectrum. Several proteins were isolated and MHC-I was chosen for the further analysis. Co-IP results showed that MHC-I interacted with Sav in vitro.
     3 VLPs expression of human NoV GII-4 and GII-12 strains
     Most recombinant EIAs developed for human caliciviruses are based on use of baculovirus-expressed viral capsid antigens. The baculovirus-expressed human calicivirus capsid antigens self-assemble into virus-like particles that are morphologically and antigenically similar to the authentic viruses found in stool specimens, providing excellent reagents for development of immunologic assays. Results showed that both GII-4 and GII-12 capsid gene fragments were successfully expressed, moreover, those proteins can self-assemble into virus-like particles. Western-blot results indicated that those VLPs can be recognized by the antibodies which product from native virion. However, the VP1 fragment fusion expressed with EGFP can not be purified well though they express in Sf9 cells.
引文
1. Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Bresee JS, Monroe SS: The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J Infect Dis 2000, 181 Suppl 2:S254-261.
    2. Saif LJ, Bohl EH, Theil KW, Cross RF, House JA: Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J Clin Microbiol 1980, 12(1):105-111.
    3. van Der Poel WH, Vinje J, van Der Heide R, Herrera MI, Vivo A, Koopmans MP: Norwalk-like calicivirus genes in farm animals. Emerg Infect Dis 2000, 6(1):36-41.
    4. Sugieda M, Nagaoka H, Kakishima Y, Ohshita T, Nakamura S, Nakajima S: Detection of Norwalk-like virus genes in the caecum contents of pigs. Arch Virol 1998, 143(6):1215-1221.
    5. Dastjerdi AM, Green J, Gallimore CI, Brown DW, Bridger JC: The bovine Newbury agent-2 is genetically more closely related to human SRSVs than to animal caliciviruses. Virology 1999, 254(1):1-5.
    6. Liu BL, Lambden PR, Gunther H, Otto P, Elschner M, Clarke IN: Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol 1999, 73(1):819-825.
    7. Gordon I, Ingraham HS, Korns RF: Transmission of Epidemic Gastroenteritis to Human Volunteers by Oral Administration of Fecal Filtrates. J Exp Med 1947, 86(5):409-422.
    8. Jordan WS, Jr., Gordon I, Dorrance WR: A study of illness in a group of Cleveland families. VII. Transmission of acute non-bacterial gastroenteritis to volunteers: evidence for two different etiologic agents. J Exp Med 1953, 98(5):461-475.
    9. Britten SA, Rubenstein AD, Raskin N, Strassman G: Epidemic diarrhea of unknown cause; report of outbreaks in three Massachusetts state hospitals. N Engl J Med 1951, 244(20):749-753.
    10. Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM: Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol 1972, 10(5):1075-1081.
    11. Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, Kasel JA, Hornick R, Chanock RM: Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis. Proc Soc Exp Biol Med 1972, 140(2):578-583.
    12. Dolin R, Blacklow NR, DuPont H, Formal S, Buscho RF, Kasel JA, Chames RP, Hornick R, Chanock RM: Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 1971, 123(3):307-312.
    13. Almeida JD, Waterson AP: The morphology of virus-antibody interaction. Adv Virus Res 1969, 15:307-338.
    14. Kapikian AZ: The discovery of the 27-nm Norwalk virus: an historic perspective. J Infect Dis 2000, 181 Suppl 2:S295-302.
    15. Dolin R, Reichman RC, Roessner KD, Tralka TS, Schooley RT, Gary W, Morens D: Detection by immune electron microscopy of the Snow Mountain agent of acute viral gastroenteritis. J Infect Dis 1982, 146(2):184-189.
    16. Thornhill TS, Wyatt RG, Kalica AR, Dolin R, Chanock RM, Kapikian AZ: Detection by immune electron microscopy of 26- to 27-nm viruslike particles associated with two family outbreaks of gastroenteritis. J Infect Dis 1977, 135(1):20-27.
    17. Madeley CR, Cosgrove BP: Letter: Caliciviruses in man. Lancet 1976, 1(7952):199-200.
    18. Flewett TH, Davies H: Letter: Caliciviruses in man. Lancet 1976, 1(7954):311.
    19. Chiba S, Sakuma Y, Kogasaka R, Akihara M, Horino K, Nakao T, Fukui S: An outbreak of gastroenteritis associated with calicivirus in an infant home. J Med Virol 1979, 4(4):249-254.
    20. Nakata S, Kogawa K, Numata K, Ukae S, Adachi N, Matson DO, Estes MK, Chiba S: The epidemiology of human calicivirus/Sapporo/82/Japan. Arch Virol Suppl 1996, 12:263-270.
    21. Xi JN, Graham DY, Wang KN, Estes MK: Norwalk virus genome cloning and characterization. Science 1990, 250(4987):1580-1583.
    22. Lew JF, Kapikian AZ, Valdesuso J, Green KY: Molecular characterization of Hawaii virus and other Norwalk-like viruses: evidence for genetic polymorphism among human caliciviruses. J Infect Dis 1994, 170(3):535-542.
    23. Wang J, Jiang X, Madore HP, Gray J, Desselberger U, Ando T, Seto Y, Oishi I, Lew JF, Green KY et al: Sequence diversity of small, round-structured viruses in the Norwalk virus group. J Virol 1994, 68(9):5982-5990.
    24. Lambden PR, Liu B, Clarke IN: A conserved sequence motif at the 5' terminus of the Southampton virus genome is characteristic of the Caliciviridae. Virus Genes 1995, 10(2):149-152.
    25. Lambden PR, Caul EO, Ashley CR, Clarke IN: Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 1993, 259(5094):516-519.
    26. Jiang X, Wang M, Wang K, Estes MK: Sequence and genomic organization of Norwalk virus. Virology 1993, 195(1):51-61.
    27. Lambden PR, Caul EO, Ashley CR, Clarke IN: Human enteric caliciviruses are genetically distinct from small round structured viruses. Lancet 1994, 343(8898):666-667.
    28. Matson DO, Zhong WM, Nakata S, Numata K, Jiang X, Pickering LK, Chiba S, Estes MK: Molecular characterization of a human calicivirus with sequence relationships closer to animal caliciviruses than other known human caliciviruses. J Med Virol 1995, 45(2):215-222.
    29. Chiba S, Nakata S, Numata-Kinoshita K, Honma S: Sapporo virus: history and recent findings. J Infect Dis 2000, 181 Suppl 2:S303-308.
    30. Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, Saif LJ: Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J Virol 1999, 73(11):9625-9631.
    31. Guo M, Evermann JF, Saif LJ: Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink. Arch Virol 2001, 146(3):479-493.
    32. Green KY, Ando T, Balayan MS, Berke T, Clarke IN, Estes MK, Matson DO, Nakata S, Neill JD, Studdert MJ et al: Taxonomy of the caliciviruses. J Infect Dis 2000, 181 Suppl 2:S322-330.
    33. Smiley JR, Chang KO, Hayes J, Vinje J, Saif LJ: Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J Virol 2002,76(20):10089-10098.
    34. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK: Laboratory efforts to cultivate noroviruses. J Gen Virol 2004, 85(Pt 1):79-87.
    35. Wobus CE, Karst SM, Thackray LB, Chang KO, Sosnovtsev SV, Belliot G, Krug A, Mackenzie JM, Green KY, Virgin HW: Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2004, 2(12):e432.
    36. Konig M, Thiel HJ, Meyers G: Detection of viral proteins after infection of cultured hepatocytes with rabbit hemorrhagic disease virus. J Virol 1998, 72(5):4492-4497.
    37. Flynn WT, Saif LJ: Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J Clin Microbiol 1988, 26(2):206-212.
    38. Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY: Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 2004, 101(23):8733-8738.
    39. Kapikian AZ, Gerin JL, Wyatt RG, Thornhill TS, Chanock RM: Density in cesium chloride of the 27 nm "8FIIa" particle associated with acute infectious nonbacterial gastroenteritis: determination by ultra-centrifugation and immune electron microscopy. Proc Soc Exp Biol Med 1973, 142(3):874-877.
    40. Keswick BH, Satterwhite TK, Johnson PC, DuPont HL, Secor SL, Bitsura JA, Gary GW, Hoff JC: Inactivation of Norwalk virus in drinking water by chlorine. Appl Environ Microbiol 1985, 50(2):261-264.
    41. Chen R, Neill JD, Noel JS, Hutson AM, Glass RI, Estes MK, Prasad BV: Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol 2004, 78(12):6469-6479.
    42. Jiang X, Wang M, Graham DY, Estes MK: Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 1992, 66(11):6527-6532.
    43. Laurent S, Vautherot JF, Madelaine MF, Le Gall G, Rasschaert D: Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J Virol 1994, 68(10):6794-6798.
    44. Leite JP, Ando T, Noel JS, Jiang B, Humphrey CD, Lew JF, Green KY, Glass RI, Monroe SS: Characterization of Toronto virus capsid protein expressed in baculovirus. Arch Virol 1996, 141(5):865-875.
    45. White LJ, Hardy ME, Estes MK: Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. J Virol 1997, 71(10):8066-8072.
    46. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK: X-ray crystallographic structure of the Norwalk virus capsid. Science 1999, 286(5438):287-290.
    47. Ng KK, Pendas-Franco N, Rojo J, Boga JA, Machin A, Alonso JM, Parra F: Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 2004, 279(16):16638-16645.
    48. Nilsson M, Hedlund KO, Thorhagen M, Larson G, Johansen K, Ekspong A, Svensson L: Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. J Virol 2003, 77(24):13117-13124.
    49. Lochridge VP, Jutila KL, Graff JW, Hardy ME: Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. J Gen Virol 2005, 86(Pt 10):2799-2806.
    50. Rohayem J, Munch J, Rethwilm A: Evidence of recombination in the norovirus capsid gene. J Virol 2005, 79(8):4977-4990.
    51. Tan M, Huang P, Meller J, Zhong W, Farkas T, Jiang X: Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 2003, 77(23):12562-12571.
    52. Bertolotti-Ciarlet A, White LJ, Chen R, Prasad BV, Estes MK: Structural requirements for the assembly of Norwalk virus-like particles. J Virol 2002, 76(8):4044-4055.
    53. Herbert TP, Brierley I, Brown TD: Detection of the ORF3 polypeptide of feline calicivirus in infected cells and evidence for its expression from a single, functionally bicistronic, subgenomic mRNA. J Gen Virol 1996, 77 ( Pt 1):123-127.
    54. Meyers G, Wirblich C, Thiel HJ: Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 1991, 184(2):677-686.
    55. Seah EL, Gunesekere IC, Marshall JA, Wright PJ: Variation in ORF3 of genogroup 2 Norwalk-like viruses. Arch Virol 1999, 144(5):1007-1014.
    56. Cauchi MR, Doultree JC, Marshall JA, Wright PJ: Molecular characterization of Camberwell virus and sequence variation in ORF3 of small round-structured (Norwalk-like) viruses. J Med Virol 1996, 49(1):70-76.
    57. Sosnovtsev SV, Green KY: Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology 2000, 277(1):193-203.
    58. Prasad BV, Hardy ME, Jiang X, Estes MK: Structure of Norwalk virus. Arch Virol Suppl 1996, 12:237-242.
    59. Wirblich C, Thiel HJ, Meyers G: Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 1996, 70(11):7974-7983.
    60. Glass PJ, White LJ, Ball JM, Leparc-Goffart I, Hardy ME, Estes MK: Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol 2000, 74(14):6581-6591.
    61. Glass PJ, Zeng CQ, Estes MK: Two nonoverlapping domains on the Norwalk virus open reading frame 3 (ORF3) protein are involved in the formation of the phosphorylated
    35K protein and in ORF3-capsid protein interactions. J Virol 2003, 77(6):3569-3577.
    62. Sosnovtsev SV, Belliot G, Chang KO, Onwudiwe O, Green KY: Feline calicivirus VP2 is essential for the production of infectious virions. J Virol 2005, 79(7):4012-4024.
    63. Bertolotti-Ciarlet A, Crawford SE, Hutson AM, Estes MK: The 3' end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol 2003, 77(21):11603-11615.
    64. Kaiser WJ, Chaudhry Y, Sosnovtsev SV, Goodfellow IG: Analysis of protein-protein interactions in the feline calicivirus replication complex. J Gen Virol 2006, 87(Pt 2):363-368.
    65. Schaffer FL, Ehresmann DW, Fretz MK, Soergel MI: A protein, VPg, covalently linked to 36S calicivirus RNA. J Gen Virol 1980, 47(1):215-220.
    66. Sosnovtseva SA, Sosnovtsev SV, Green KY: Mapping of the feline calicivirus proteinaseresponsible for autocatalytic processing of the nonstructural polyprotein and identification of a stable proteinase-polymerase precursor protein. J Virol 1999,
    73(8):6626-6633. 67. Liu B, Clarke IN, Lambden PR: Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 1996, 70(4):2605-2610.
    68. Boniotti B, Wirblich C, Sibilia M, Meyers G, Thiel HJ, Rossi C: Identification and characterization of a 3C-like protease from rabbit hemorrhagic disease virus, a calicivirus. J Virol 1994, 68(10):6487-6495.
    69. Liu BL, Viljoen GJ, Clarke IN, Lambden PR: Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 1999, 80 ( Pt 2):291-296.
    70. Oka T, Katayama K, Ogawa S, Hansman GS, Kageyama T, Ushijima H, Miyamura T, Takeda N: Proteolytic processing of sapovirus ORF1 polyprotein. J Virol 2005, 79(12):7283-7290.
    71. Meyers G, Wirblich C, Thiel HJ, Thumfart JO: Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 2000, 276(2):349-363.
    72. Sosnovtsev SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, Wobus CE, Karst SM, Virgin HW, Green KY: Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 2006, 80(16):7816-7831.
    73. Sosnovtsev SV, Garfield M, Green KY: Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J Virol 2002,
    76(14):7060-7072. 74. Hardy ME: Norovirus protein structure and function. FEMS Microbiol Lett 2005, 253(1):1-8.
    75. Neill JD: Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 1990, 17(3):145-160.
    76. Kreutz LC, Seal BS, Mengeling WL: Early interaction of feline calicivirus with cells in culture. Arch Virol 1994, 136(1-2):19-34.
    77. Maeda Y, Tohya Y, Matsuura Y, Mochizuki M, Sugimura T: Early interaction of canine calicivirus with cells is the major determinant for its cell tropism in vitro. Vet Microbiol 2002, 87(4):291-300.
    78. Gutierrez-Escolano AL, Brito ZU, del Angel RM, Jiang X: Interaction of cellular proteins with the 5' end of Norwalk virus genomic RNA. J Virol 2000, 74(18):8558-8562.
    79. Lewis D: Norwalk agent and other small-round structured viruses in the U.K. J Infect 1991, 23(2):220-222.
    80. Neill JD, Mengeling WL: Further characterization of the virus-specific RNAs in feline calicivirus infected cells. Virus Res 1988, 11(1):59-72.
    81. Morales M, Barcena J, Ramirez MA, Boga JA, Parra F, Torres JM: Synthesis in vitro of rabbit hemorrhagic disease virus subgenomic RNA by internal initiation on (-)sense genomic RNA: mapping of a subgenomic promoter. J Biol Chem 2004, 279(17):17013-17018.
    82. Green KY, Mory A, Fogg MH, Weisberg A, Belliot G, Wagner M, Mitra T, Ehrenfeld E,Cameron CE, Sosnovtsev SV: Isolation of enzymatically active replication complexes from feline calicivirus-infected cells. J Virol 2002, 76(17):8582-8595.
    83. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS: Norovirus classification and proposed strain nomenclature. Virology 2006, 346(2):312-323.
    84. Wang QH, Han MG, Cheetham S, Souza M, Funk JA, Saif LJ: Porcine noroviruses related to human noroviruses. Emerg Infect Dis 2005, 11(12):1874-1881.
    85. Schuffenecker I, Ando T, Thouvenot D, Lina B, Aymard M: Genetic classification of "Sapporo-like viruses". Arch Virol 2001, 146(11):2115-2132.
    86. Farkas T, Zhong WM, Jing Y, Huang PW, Espinosa SM, Martinez N, Morrow AL, Ruiz-Palacios GM, Pickering LK, Jiang X: Genetic diversity among sapoviruses. Arch Virol 2004, 149(7):1309-1323.
    87. Martinez MA, Alcala AC, Carruyo G, Botero L, Liprandi F, Ludert JE: Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Vet Microbiol 2006, 116(1-3):77-84.
    88. Yin Y, Tohya Y, Ogawa Y, Numazawa D, Kato K, Akashi H: Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch Virol 2006, 151(9):1749-1759.
    89. Wang QH, Han MG, Funk JA, Bowman G, Janies DA, Saif LJ: Genetic diversity and recombination of porcine sapoviruses. J Clin Microbiol 2005, 43(12):5963-5972.
    90. Kim HJ, Cho HS, Cho KO, Park NY: Detection and molecular characterization of porcine enteric calicivirus in Korea, genetically related to sapoviruses. J Vet Med B Infect Dis Vet Public Health 2006, 53(4):155-159.
    91. Zhang W, Shen Q, Hua X, Cui L, Liu J, Yang S: The first Chinese porcine sapovirus strain that contributed to an outbreak of gastroenteritis in piglets. J Virol 2008, 82(16):8239-8240.
    92. Katayama K, Shirato-Horikoshi H, Kojima S, Kageyama T, Oka T, Hoshino F, Fukushi S, Shinohara M, Uchida K, Suzuki Y et al: Phylogenetic analysis of the complete genome of
    18 Norwalk-like viruses. Virology 2002, 299(2):225-239.
    93. Vinje J, Green J, Lewis DC, Gallimore CI, Brown DW, Koopmans MP: Genetic polymorphism across regions of the three open reading frames of "Norwalk-like viruses". Arch Virol 2000, 145(2):223-241.
    94. Jiang X, Espul C, Zhong WM, Cuello H, Matson DO: Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol 1999, 144(12):2377-2387.
    95. Lochridge VP, Hardy ME: Snow Mountain virus genome sequence and virus-like particle assembly. Virus Genes 2003, 26(1):71-82.
    96. Hansman GS, Katayama K, Maneekarn N, Peerakome S, Khamrin P, Tonusin S, Okitsu S, Nishio O, Takeda N, Ushijima H: Genetic diversity of norovirus and sapovirus in hospitalized infants with sporadic cases of acute gastroenteritis in Chiang Mai, Thailand. J Clin Microbiol 2004, 42(3):1305-1307.
    97. Han MG, Smiley JR, Thomas C, Saif LJ: Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. J Clin Microbiol 2004, 42(11):5214-5224.
    98. Katayama K, Miyoshi T, Uchino K, Oka T, Tanaka T, Takeda N, Hansman GS: Novel recombinant sapovirus. Emerg Infect Dis 2004, 10(10):1874-1876.
    99. Hansman GS, Takeda N, Oka T, Oseto M, Hedlund KO, Katayama K: Intergenogroup recombination in sapoviruses. Emerg Infect Dis 2005, 11(12):1916-1920.
    100. Phan TG, Kaneshi K, Ueda Y, Nakaya S, Nishimura S, Yamamoto A, Sugita K, Takanashi S, Okitsu S, Ushijima H: Genetic heterogeneity, evolution, and recombination in noroviruses. J Med Virol 2007, 79(9):1388-1400.
    101. Atmar RL, Estes MK: Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev 2001, 14(1):15-37.
    102. Riepenhoff-Talty M, Barrett HJ, Spada BA, Ogra PL: Negative staining and immune electron microscopy as techniques for rapid diagnosis of viral agents. Ann N Y Acad Sci 1983, 420:391-400.
    103. Wang QH, Chang KO, Han MG, Sreevatsan S, Saif LJ: Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J Virol Methods 2006, 132(1-2):135-145.
    104. Guo M, Hayes J, Cho KO, Parwani AV, Lucas LM, Saif LJ: Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol 2001, 75(19):9239-9251.
    105. Guo M, Qian Y, Chang KO, Saif LJ: Expression and self-assembly in baculovirus of porcine enteric calicivirus capsids into virus-like particles and their use in an enzyme-linked immunosorbent assay for antibody detection in swine. J Clin Microbiol 2001, 39(4):1487-1493.
    106. Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, Estes MK: Norwalk virus infection of volunteers: new insights based on improved assays. J Infect Dis 1994, 170(1):34-43.
    107. Hale AD, Crawford SE, Ciarlet M, Green J, Gallimore C, Brown DW, Jiang X, Estes MK: Expression and self-assembly of Grimsby virus: antigenic distinction from Norwalk and Mexico viruses. Clin Diagn Lab Immunol 1999, 6(1):142-145.
    108. Numata K, Nakata S, Jiang X, Estes MK, Chiba S: Epidemiological study of Norwalk virus infections in Japan and Southeast Asia by enzyme-linked immunosorbent assays with Norwalk virus capsid protein produced by the baculovirus expression system. J Clin Microbiol 1994, 32(1):121-126.
    109. Kobayashi S, Sakae K, Suzuki Y, Ishiko H, Kamata K, Suzuki K, Natori K, Miyamura T, Takeda N: Expression of recombinant capsid proteins of chitta virus, a genogroup II Norwalk virus, and development of an ELISA to detect the viral antigen. Microbiol Immunol 2000, 44(8):687-693.
    110. Kamata K, Shinozaki K, Okada M, Seto Y, Kobayashi S, Sakae K, Oseto M, Natori K, Shirato-Horikoshi H, Katayama K et al: Expression and antigenicity of virus-like particles of norovirus and their application for detection of noroviruses in stool samples. J Med Virol 2005, 76(1):129-136.
    111. Farkas T, Nakajima S, Sugieda M, Deng X, Zhong W, Jiang X: Seroprevalence of noroviruses in swine. J Clin Microbiol 2005, 43(2):657-661.
    112. Marks PJ, Vipond IB, Carlisle D, Deakin D, Fey RE, Caul EO: Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant. Epidemiol Infect 2000, 124(3):481-487.
    113. Evans MR, Meldrum R, Lane W, Gardner D, Ribeiro CD, Gallimore CI, Westmoreland D: Anoutbreak of viral gastroenteritis following environmental contamination at a concert hall. Epidemiol Infect 2002, 129(2):355-360.
    114. Marks PJ, Vipond IB, Regan FM, Wedgwood K, Fey RE, Caul EO: A school outbreak of Norwalk-like virus: evidence for airborne transmission. Epidemiol Infect 2003, 131(1):727-736.
    115. Farkas T, Jiang X, Guerrero ML, Zhong W, Wilton N, Berke T, Matson DO, Pickering LK, Ruiz-Palacios G: Prevalence and genetic diversity of human caliciviruses (HuCVs) in Mexican children. J Med Virol 2000, 62(2):217-223.
    116. Martinez N, Espul C, Cuello H, Zhong W, Jiang X, Matson DO, Berke T: Sequence diversity of human caliciviruses recovered from children with diarrhea in Mendoza, Argentina, 1995-1998. J Med Virol 2002, 67(2):289-298.
    117. O'Ryan ML, Mamani N, Gaggero A, Avendano LF, Prieto S, Pena A, Jiang X, Matson DO: Human caliciviruses are a significant pathogen of acute sporadic diarrhea in children of Santiago, Chile. J Infect Dis 2000, 182(5):1519-1522.
    118. Viral gastroenteritis--South Dakota and New Mexico. MMWR Morb Mortal Wkly Rep 1988, 37(5):69-71.
    119. Subekti D, Lesmana M, Tjaniadi P, Safari N, Frazier E, Simanjuntak C, Komalarini S, Taslim J, Campbell JR, Oyofo BA: Incidence of Norwalk-like viruses, rotavirus and adenovirus infection in patients with acute gastroenteritis in Jakarta, Indonesia. FEMS Immunol Med Microbiol 2002, 33(1):27-33.
    120. Wolfaardt M, Taylor MB, Booysen HF, Engelbrecht L, Grabow WO, Jiang X: Incidence of human calicivirus and rotavirus infection in patients with gastroenteritis in South Africa. J Med Virol 1997, 51(4):290-296.
    121. Qiao H, Nilsson M, Abreu ER, Hedlund KO, Johansen K, Zaori G, Svensson L: Viral diarrhea in children in Beijing, China. J Med Virol 1999, 57(4):390-396.
    122. Bereciartu A, Bok K, Gomez J: Identification of viral agents causing gastroenteritis among children in Buenos Aires, Argentina. J Clin Virol 2002, 25(2):197-203.
    123. Simpson R, Aliyu S, Iturriza-Gomara M, Desselberger U, Gray J: Infantile viral gastroenteritis: on the way to closing the diagnostic gap. J Med Virol 2003, 70(2):258-262.
    124. Foley B, O'Mahony J, Morgan SM, Hill C, Morgan JG: Detection of sporadic cases of Norwalk-like virus (NLV) and astrovirus infection in a single Irish hospital from 1996 to 1998. J Clin Virol 2000, 17(2):109-117.
    125. Marie-Cardine A, Gourlain K, Mouterde O, Castignolles N, Hellot MF, Mallet E, Buffet-Janvresse C: Epidemiology of acute viral gastroenteritis in children hospitalized in Rouen, France. Clin Infect Dis 2002, 34(9):1170-1178.
    126. Kirkwood CD, Bishop RF: Molecular detection of human calicivirus in young children hospitalized with acute gastroenteritis in Melbourne, Australia, during 1999. J Clin Microbiol 2001, 39(7):2722-2724.
    127. Roman E, Negredo A, Dalton RM, Wilhelmi I, Sanchez-Fauquier A: Molecular detection of human calicivirus among Spanish children with acute gastroenteritis. J Clin Microbiol 2002, 40(10):3857-3859.
    128. Bon F, Fascia P, Dauvergne M, Tenenbaum D, Planson H, Petion AM, Pothier P, Kohli E: Prevalence of group A rotavirus, human calicivirus, astrovirus, and adenovirus type 40 and 41 infections among children with acute gastroenteritis in Dijon, France. J ClinMicrobiol 1999, 37(9):3055-3058.
    129. Buesa J, Collado B, Lopez-Andujar P, Abu-Mallouh R, Rodriguez Diaz J, Garcia Diaz A, Prat J, Guix S, Llovet T, Prats G et al: Molecular epidemiology of caliciviruses causing outbreaks and sporadic cases of acute gastroenteritis in Spain. J Clin Microbiol 2002, 40(8):2854-2859.
    130. Oh DY, Gaedicke G, Schreier E: Viral agents of acute gastroenteritis in German children: prevalence and molecular diversity. J Med Virol 2003, 71(1):82-93.
    131. Cubitt WD, Green KY, Payment P: Prevalence of antibodies to the Hawaii strain of human calicivirus as measured by a recombinant protein based immunoassay. J Med Virol 1998, 54(2):135-139.
    132. Dimitrov DH, Dashti SA, Ball JM, Bishbishi E, Alsaeid K, Jiang X, Estes MK: Prevalence of antibodies to human caliciviruses (HuCVs) in Kuwait established by ELISA using baculovirus-expressed capsid antigens representing two genogroups of HuCVs. J Med Virol 1997, 51(2):115-118.
    133. Jiang X, Wilton N, Zhong WM, Farkas T, Huang PW, Barrett E, Guerrero M, Ruiz-Palacios G, Green KY, Green J et al: Diagnosis of human caliciviruses by use of enzyme immunoassays. J Infect Dis 2000, 181 Suppl 2:S349-359.
    134. O'Ryan ML, Vial PA, Mamani N, Jiang X, Estes MK, Ferrecio C, Lakkis H, Matson DO: Seroprevalence of Norwalk virus and Mexico virus in Chilean individuals: assessment of independent risk factors for antibody acquisition. Clin Infect Dis 1998, 27(4):789-795.
    135. Parker SP, Cubitt WD, Jiang X: Enzyme immunoassay using baculovirus-expressed human calicivirus (Mexico) for the measurement of IgG responses and determining its seroprevalence in London, UK. J Med Virol 1995, 46(3):194-200.
    136. Smit TK, Bos P, Peenze I, Jiang X, Estes MK, Steele AD: Seroepidemiological study of genogroup I and II calicivirus infections in South and southern Africa. J Med Virol 1999, 59(2):227-231.
    137. Vinje J, Koopmans MP: Molecular detection and epidemiology of small round-structured viruses in outbreaks of gastroenteritis in the Netherlands. J Infect Dis 1996, 174(3):610-615.
    138. Inouye S, Yamashita K, Yamadera S, Yoshikawa M, Kato N, Okabe N: Surveillance of viral gastroenteritis in Japan: pediatric cases and outbreak incidents. J Infect Dis 2000, 181 Suppl 2:S270-274.
    139. Dedman D, Laurichesse H, Caul EO, Wall PG: Surveillance of small round structured virus (SRSV) infection in England and Wales, 1990-5. Epidemiol Infect 1998, 121(1):139-149.
    140. Greenberg HB, Valdesuso J, Yolken RH, Gangarosa E, Gary W, Wyatt RG, Konno T, Suzuki H, Chanock RM, Kapikian AZ: Role of Norwalk virus in outbreaks of nonbacterial gastroenteritis. J Infect Dis 1979, 139(5):564-568.
    141. Fankhauser RL, Monroe SS, Noel JS, Humphrey CD, Bresee JS, Parashar UD, Ando T, Glass RI: Epidemiologic and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. J Infect Dis 2002, 186(1):1-7.
    142. Hedberg C: Food-related illness and death in the United States. Emerg Infect Dis 1999, 5(6):840-842.
    143. Lopman BA, Reacher MH, Van Duijnhoven Y, Hanon FX, Brown D, Koopmans M: Viral gastroenteritis outbreaks in Europe, 1995-2000. Emerg Infect Dis 2003, 9(1):90-96.
    144. McCarthy M, Estes MK, Hyams KC: Norwalk-like virus infection in military forces: epidemic potential, sporadic disease, and the future direction of prevention and control efforts. J Infect Dis 2000, 181 Suppl 2:S387-391.
    145. Bourgeois AL, Gardiner CH, Thornton SA, Batchelor RA, Burr DH, Escamilla J, Echeverria P, Blacklow NR, Herrmann JE, Hyams KC: Etiology of acute diarrhea among United States military personnel deployed to South America and west Africa. Am J Trop Med Hyg 1993, 48(2):243-248.
    146. Bohnker BK, Thornton S: Explosive outbreaks of gastroenteritis in the shipboard environment attributed to Norovirus. Mil Med 2003, 168(5):iv.
    147. Corwin AL, Soderquist R, Edwards M, White A, Beecham J, Mills P, Larasati RP, Subekti D, Ansari T, Burans J et al: Shipboard impact of a probable Norwalk virus outbreak from coastal Japan. Am J Trop Med Hyg 1999, 61(6):898-903.
    148. Li H, Mo YL, Ke CW, Zheng HZ, Zhou XH, Guo RN, Chen QX, Fang L, Zou LR: [Molecular epidemiological characteristics of norovirus gastroenteritis outbreaks in Guangdong from 2005 to 2008]. Bing Du Xue Bao, 26(3):202-207.
    149. Tan DM, Liu W, Deng LL: [Norovirus infection in adults with sporadic gastroenteritis during 2007-2008 in Nanning Municipal]. Zhongguo Yi Miao He Mian Yi, 16(2):132-135.
    150. Kaplan JE, Feldman R, Campbell DS, Lookabaugh C, Gary GW: The frequency of a Norwalk-like pattern of illness in outbreaks of acute gastroenteritis. Am J Public Health 1982, 72(12):1329-1332.
    151. Rockx B, De Wit M, Vennema H, Vinje J, De Bruin E, Van Duynhoven Y, Koopmans M: Natural history of human calicivirus infection: a prospective cohort study. Clin Infect Dis 2002, 35(3):246-253.
    152. Woode GN, Bridger JC: Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. J Med Microbiol 1978, 11(4):441-452.
    153. Scipioni A, Mauroy A, Vinje J, Thiry E: Animal noroviruses. Vet J 2008, 178(1):32-45.
    154. Mauroy A, Scipioni A, Mathijs E, Miry C, Ziant D, Thys C, Thiry E: Noroviruses and sapoviruses in pigs in Belgium. Arch Virol 2008, 153(10):1927-1931.
    155. Ohlinger VF, Haas B, Meyers G, Weiland F, Thiel HJ: Identification and characterization of the virus causing rabbit hemorrhagic disease. J Virol 1990, 64(7):3331-3336.
    156. Reuter G, Biro H, Szucs G: Enteric caliciviruses in domestic pigs in Hungary. Arch Virol 2007, 152(3):611-614.
    157. Yu JN, Kim MY, Kim DG, Kim SE, Lee JB, Park SY, Song CS, Shin HC, Seo KH, Choi IS: Prevalence of hepatitis E virus and sapovirus in post-weaning pigs and identification of their genetic diversity. Arch Virol 2008, 153(4):739-742.
    158. Shen Q, Zhang W, Yang S, Chen Y, Ning H, Shan T, Liu J, Yang Z, Cui L, Zhu J et al: Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Arch Virol 2009, 154(10):1625-1630.
    159. Martella V, Campolo M, Lorusso E, Cavicchio P, Camero M, Bellacicco AL, Decaro N, Elia G, Greco G, Corrente M et al: Norovirus in captive lion cub (Panthera leo). Emerg Infect Dis 2007, 13(7):1071-1073.
    160. Martella V, Lorusso E, Decaro N, Elia G, Radogna A, D'Abramo M, Desario C, Cavalli A, Corrente M, Camero M et al: Detection and molecular characterization of a canine norovirus. Emerg Infect Dis 2008, 14(8):1306-1308.
    161. Nakata S, Honma S, Numata K, Kogawa K, Ukae S, Adachi N, Jiang X, Estes MK, Gatheru Z, Tukei PM et al: Prevalence of human calicivirus infections in Kenya as determined by enzyme immunoassays for three genogroups of the virus. J Clin Microbiol 1998, 36(11):3160-3163.
    162. Chanit W, Thongprachum A, Khamrin P, Okitsu S, Mizuguchi M, Ushijima H: Intergenogroup recombinant sapovirus in Japan, 2007-2008. Emerg Infect Dis 2009, 15(7):1084-1087.
    163. Svraka S, Vennema H, van der Veer B, Hedlund KO, Thorhagen M, Siebenga J, Duizer E, Koopmans M: Epidemiology and genotype analysis of emerging sapovirus-associated infections across Europe. J Clin Microbiol, 48(6):2191-2198.
    164. Fang ZY, Xie HP, Lv HX, Zhang Q, Duan ZJ, Steele D, Jiang B, Jiang X: [Investigation of human calicivirus (HuCV) diarrhea among infantile and young children in China, 1999--2005]. Bing Du Xue Bao 2007, 23(1):9-15.
    165. Chang ZR, Jin M, Liu N, Xie HP, Cui SX, Zhang Q, Duan ZJ: [Analysis of epidemiologic feature and genetic sequence of Sapovirus in China]. Bing Du Xue Bao 2009, 25(2):113-116.
    166. Cheng WX, Ye XH, Yang XM, Li YN, Jin M, Jin Y, Duan ZJ: Epidemiological study of human calicivirus infection in children with gastroenteritis in Lanzhou from 2001 to 2007. Arch Virol, 155(4):553-555.
    167. Wang QH, Souza M, Funk JA, Zhang W, Saif LJ: Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J Clin Microbiol 2006, 44(6):2057-2062.
    168. Jeong C, Park SI, Park SH, Kim HH, Park SJ, Jeong JH, Choy HE, Saif LJ, Kim SK, Kang MI et al: Genetic diversity of porcine sapoviruses. Vet Microbiol 2007, 122(3-4):246-257.
    169. Shieh Y, Monroe SS, Fankhauser RL, Langlois GW, Burkhardt W, 3rd, Baric RS: Detection of norwalk-like virus in shellfish implicated in illness. J Infect Dis 2000, 181 Suppl 2:S360-366.
    170. Aw TG, Gin KY, Ean Oon LL, Chen EX, Woo CH: Prevalence and genotypes of human noroviruses in tropical urban surface waters and clinical samples in Singapore. Appl Environ Microbiol 2009, 75(15):4984-4992.
    171. Wang QH, Costantini V, Saif LJ: Porcine enteric caliciviruses: genetic and antigenic relatedness to human caliciviruses, diagnosis and epidemiology. Vaccine 2007, 25(30):5453-5466.
    172. Costantini V, Loisy F, Joens L, Le Guyader FS, Saif LJ: Human and animal enteric caliciviruses in oysters from different coastal regions of the United States. Appl Environ Microbiol 2006, 72(3):1800-1809.
    173. Hansman GS, Oka T, Okamoto R, Nishida T, Toda S, Noda M, Sano D, Ueki Y, Imai T, Omura T et al: Human sapovirus in clams, Japan. Emerg Infect Dis 2007, 13(4):620-622.
    174. Hansman GS, Sano D, Ueki Y, Imai T, Oka T, Katayama K, Takeda N, Omura T: Sapovirus in water, Japan. Emerg Infect Dis 2007, 13(1):133-135.
    175. Iizuka S, Oka T, Tabara K, Omura T, Katayama K, Takeda N, Noda M: Detection of sapoviruses and noroviruses in an outbreak of gastroenteritis linked genetically to shellfish. J Med Virol, 82(7):1247-1254.
    176. Schreiber DS, Blacklow NR, Trier JS: The small intestinal lesion induced by Hawaii agentacute infectious nonbacterial gastroenteritis. J Infect Dis 1974, 129(6):705-708.
    177. Schreiber DS, Blacklow NR, Trier JS: The mucosal lesion of the proximal small intestine in acute infectious nonbacterial gastroenteritis. N Engl J Med 1973, 288(25):1318-1323.
    178. Dolin R, Levy AG, Wyatt RG, Thornhill TS, Gardner JD: Viral gastroenteritis induced by the Hawaii agent. Jejunal histopathology and serologic response. Am J Med 1975, 59(6):761-768.
    179. Agus SG, Dolin R, Wyatt RG, Tousimis AJ, Northrup RS: Acute infectious nonbacterial gastroenteritis: intestinal histopathology. Histologic and enzymatic alterations during illness produced by the Norwalk agent in man. Ann Intern Med 1973, 79(1):18-25.
    180. Flynn WT, Saif LJ, Moorhead PD: Pathogenesis of porcine enteric calicivirus-like virus in four-day-old gnotobiotic pigs. Am J Vet Res 1988, 49(6):819-825.
    181. Widerlite L, Trier JS, Blacklow NR, Schreiber DS: Structure of the gastric mucosa in acute infectious bacterial gastroenteritis. Gastroenterology 1975, 68(3):425-430.
    182. Acute infectious nonbacterial gastroenteritis: etiology and pathogenesis. Ann Intern Med 1972, 76(6):993-1008.
    183. Levy AG, Widerlite L, Schwartz CJ, Dolin R, Blacklow NR, Gardner JD, Kimberg DV, Trier JS: Jejunal adenylate cyclase activity in human subjects during viral gastroenteritis. Gastroenterology 1976, 70(3):321-325.
    184. Meeroff JC, Schreiber DS, Trier JS, Blacklow NR: Abnormal gastric motor function in viral gastroenteritis. Ann Intern Med 1980, 92(3):370-373.
    185. Bank-Wolf BR, Konig M, Thiel HJ: Zoonotic aspects of infections with noroviruses and sapoviruses. Vet Microbiol, 140(3-4):204-212.
    186. Souza M, Azevedo MS, Jung K, Cheetham S, Saif LJ: Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J Virol 2008, 82(4):1777-1786.
    187. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ: Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 2006, 80(21):10372-10381.
    188. Rockx BH, Bogers WM, Heeney JL, van Amerongen G, Koopmans MP: Experimental norovirus infections in non-human primates. J Med Virol 2005, 75(2):313-320.
    189. Hutson AM, Atmar RL, Graham DY, Estes MK: Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 2002, 185(9):1335-1337.
    190. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R: Human susceptibility and resistance to Norwalk virus infection. Nat Med 2003, 9(5):548-553.
    191. Tan M, Jin M, Xie H, Duan Z, Jiang X, Fang Z: Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. J Med Virol 2008, 80(7):1296-1301.
    192. Thorven M, Grahn A, Hedlund KO, Johansson H, Wahlfrid C, Larson G, Svensson L: A homozygous nonsense mutation (428G-->A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol 2005, 79(24):15351-15355.
    193. Bu W, Mamedova A, Tan M, Xia M, Jiang X, Hegde RS: Structural basis for the receptor binding specificity of Norwalk virus. J Virol 2008, 82(11):5340-5347.
    194. Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, Zhang XC, Jiang X, Li X, Rao Z: Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 2007,81(11):5949-5957.
    195. Choi JM, Hutson AM, Estes MK, Prasad BV: Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc Natl Acad Sci U S A 2008, 105(27):9175-9180.
    196. Tan M, Xia M, Chen Y, Bu W, Hegde RS, Meller J, Li X, Jiang X: Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution. PLoS One 2009, 4(4):e5058.
    197. Ruvoen-Clouet N, Ganiere JP, Andre-Fontaine G, Blanchard D, Le Pendu J: Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol 2000, 74(24):11950-11954.
    198. Guillon P, Ruvoen-Clouet N, Le Moullac-Vaidye B, Marchandeau S, Le Pendu J: Association between expression of the H histo-blood group antigen, alpha1,2fucosyltransferases polymorphism of wild rabbits, and sensitivity to rabbit hemorrhagic disease virus. Glycobiology 2009, 19(1):21-28.
    199. Zakhour M, Ruvoen-Clouet N, Charpilienne A, Langpap B, Poncet D, Peters T, Bovin N, Le Pendu J: The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission. PLoS Pathog 2009, 5(7):e1000504.
    200. Taube S, Perry JW, Yetming K, Patel SP, Auble H, Shu L, Nawar HF, Lee CH, Connell TD, Shayman JA et al: Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 2009, 83(9):4092-4101.
    201. Stuart AD, Brown TD: Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J Gen Virol 2007, 88(Pt 1):177-186.
    202. Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H: Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 2006, 80(9):4482-4490.
    203. Farkas T, Sestak K, Wei C, Jiang X: Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 2008, 82(11):5408-5416.
    204. Farkas T, Cross RW, Hargitt E, 3rd, Lerche NW, Morrow AL, Sestak K: Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J Virol, 84(17):8617-8625.
    205. Aggarwal R, Shahi H, Naik S, Yachha SK, Naik SR: Evidence in favour of high infection rate with hepatitis E virus among young children in India. J Hepatol 1997, 26(6):1425-1426.
    206. Khuroo MS, Saleem M, Teli MR, Sofi MA: Failure to detect chronic liver disease after epidemic non-A, non-B hepatitis. Lancet 1980, 2(8185):97-98.
    207. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC et al: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426(6965):450-454.
    208. Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340(6230):245-246.
    209. Gaggar A, Shayakhmetov DM, Lieber A: CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003, 9(11):1408-1412.
    210. Dorig RE, Marcil A, Chopra A, Richardson CD: The human CD46 molecule is a receptorfor measles virus (Edmonston strain). Cell 1993, 75(2):295-305.
    211. Harms PA, Sorden SD, Halbur PG, Bolin SR, Lager KM, Morozov I, Paul PS: Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol 2001, 38(5):528-539.
    212. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK: Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 1992, 30(6):1365-1373.
    213. Gagnon CA, Tremblay D, Tijssen P, Venne MH, Houde A, Elahi SM: The emergence of porcine circovirus 2b genotype (PCV-2b) in swine in Canada. Can Vet J 2007, 48(8):811-819.
    214. Park SJ, Moon HJ, Yang JS, Lee CS, Song DS, Kang BK, Park BK: Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea. Virus Genes 2007, 35(2):321-332.
    215. Jiang X, Huang PW, Zhong WM, Farkas T, Cubitt DW, Matson DO: Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J Virol Methods 1999, 83(1-2):145-154.
    216. Barry AF, Alfieri AF, Alfieri AA: High genetic diversity in RdRp gene of Brazilian porcine sapovirus strains. Vet Microbiol 2008, 131(1-2):185-191.
    217. Martella V, Lorusso E, Banyai K, Decaro N, Corrente M, Elia G, Cavalli A, Radogna A, Costantini V, Saif LJ et al: Identification of a porcine calicivirus related genetically to human sapoviruses. J Clin Microbiol 2008, 46(6):1907-1913.
    218. Martella V, Banyai K, Lorusso E, Bellacicco AL, Decaro N, Mari V, Saif L, Costantini V, De Grazia S, Pezzotti G et al: Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. Virus Genes 2008, 36(2):365-373.
    219. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gomara M, Maes P, Patton JT et al: Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 2008, 82(7):3204-3219.
    220. L'Homme Y, Sansregret R, Plante-Fortier E, Lamontagne AM, Lacroix G, Ouardani M, Deschamps J, Simard G, Simard C: Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005-2007. Arch Virol 2009, 154(4):581-593.
    221. Cooper K, Huang FF, Batista L, Rayo CD, Bezanilla JC, Toth TE, Meng XJ: Identification of genotype 3 hepatitis E virus (HEV) in serum and fecal samples from pigs in Thailand and Mexico, where genotype 1 and 2 HEV strains are prevalent in the respective human populations. J Clin Microbiol 2005, 43(4):1684-1688.
    222. Li K, Zhuang H, Zhu W: Partial nucleotide sequencing of hepatitis E viruses detected in sera of patients with hepatitis E from 14 cities in China. Chin Med J (Engl) 2002, 115(7):1058-1063.
    223. Nayak MK, Chatterjee D, Nataraju SM, Pativada M, Mitra U, Chatterjee MK, Saha TK, Sarkar U, Krishnan T: A new variant of Norovirus GII.4/2007 and inter-genotype recombinant strains of NVGII causing acute watery diarrhoea among children in Kolkata, India. J Clin Virol 2009, 45(3):223-229.
    224. Oka T, Miyashita K, Katayama K, Wakita T, Takeda N: Distinct genotype and antigenicityamong genogroup II sapoviruses. Microbiol Immunol 2009, 53(7):417-420.
    225. Panda SK, Thakral D, Rehman S: Hepatitis E virus. Rev Med Virol 2007, 17(3):151-180.
    226. Zheng Y, Ge S, Zhang J, Guo Q, Ng MH, Wang F, Xia N, Jiang Q: Swine as a principal reservoir of hepatitis E virus that infects humans in eastern China. J Infect Dis 2006, 193(12):1643-1649.
    227. Zhang W, Shen Q, Mou J, Yang ZB, Yuan CL, Cui L, Zhu JG, Hua XG, Xu CM, Hu J: Cross-species infection of hepatitis E virus in a zoo-like location, including birds. Epidemiol Infect 2008, 136(8):1020-1026.
    228. Li RC, Ge SX, Li YP, Zheng YJ, Nong Y, Guo QS, Zhang J, Ng MH, Xia NS: Seroprevalence of hepatitis E virus infection, rural southern People's Republic of China. Emerg Infect Dis 2006, 12(11):1682-1688.
    229. Zhang W, Yang S, Ren L, Shen Q, Cui L, Fan K, Huang F, Kang Y, Shan T, Wei J et al: Hepatitis E virus infection in central China reveals no evidence of cross-species transmission between human and swine in this area. PLoS One 2009, 4(12):e8156.
    230. Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI: Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 2003, 9(5):565-572.
    231. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 2004, 5(2):150-163.
    232. Martin DP, Posada D, Crandall KA, Williamson C: A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 2005, 21(1):98-102.
    233. Kozak M: Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 1991, 266(30):19867-19870.
    234. Nakata S, Chiba S, Terashima H, Sakuma Y, Kogasaka R, Nakao T: Microtiter solid-phase radioimmunoassay for detection of human calicivirus in stools. J Clin Microbiol 1983, 17(2):198-201.
    235. Blanton LH, Adams SM, Beard RS, Wei G, Bulens SN, Widdowson MA, Glass RI, Monroe SS: Molecular and epidemiologic trends of caliciviruses associated with outbreaks of acute gastroenteritis in the United States, 2000-2004. J Infect Dis 2006, 193(3):413-421.
    236. Lopman B, Vennema H, Kohli E, Pothier P, Sanchez A, Negredo A, Buesa J, Schreier E, Reacher M, Brown D et al: Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 2004, 363(9410):682-688.
    237. Yun SI, Kim JK, Song BH, Jeong AY, Jee YM, Lee CH, Paik SY, Koo Y, Jeon I, Byun SJ et al: Complete genome sequence and phylogenetic analysis of a recombinant Korean norovirus, CBNU1, recovered from a 2006 outbreak. Virus Res, 152(1-2):137-152.
    238. Reuter G, Krisztalovics K, Vennema H, Koopmans M, Szucs G: Evidence of the etiological predominance of norovirus in gastroenteritis outbreaks--emerging new-variant and recombinant noroviruses in Hungary. J Med Virol 2005, 76(4):598-607.
    239. Dey SK, Phan TG, Mizuguchia M, Okitsua S, Ushijima H: Novel recombinant norovirus in Japan. Virus Genes, 40(3):362-364.
    240. Jin M, Xie HP, Duan ZJ, Liu N, Zhang Q, Wu BS, Li HY, Cheng WX, Yang SH, Yu JM et al: Emergence of the GII4/2006b variant and recombinant noroviruses in China. J Med Virol 2008, 80(11):1997-2004.
    241. Mead PS, Slutsker L, Griffin PM, Tauxe RV: Food-related illness and death in the unitedstates reply to dr. hedberg. Emerg Infect Dis 1999, 5(6):841-842.
    242. Parwani AV, Flynn WT, Gadfield KL, Saif LJ: Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. Arch Virol 1991, 120(1-2):115-122.
    243. Shirato-Horikoshi H, Ogawa S, Wakita T, Takeda N, Hansman GS: Binding activity of norovirus and sapovirus to histo-blood group antigens. Arch Virol 2007, 152(3):457-461.
    244. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D: Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000, 275(36):27979-27988.
    245. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA: Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000, 113 ( Pt 13):2363-2374.
    246. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A et al: Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998, 142(1):117-127.
    247. Ossiboff RJ, Parker JS: Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. J Virol 2007, 81(24):13608-13621.
    248. Levin Perlman S, Jordan M, Brossmer R, Greengard O, Moscona A: The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3. Virology 1999, 265(1):57-65.
    249. Zimmer G, Klenk HD, Herrler G: Identification of a 40-kDa cell surface sialoglycoprotein with the characteristics of a major influenza C virus receptor in a Madin-Darby canine kidney cell line. J Biol Chem 1995, 270(30):17815-17822.
    250. Schneider-Schaulies J, Dunster LM, Schwartz-Albiez R, Krohne G, ter Meulen V: Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol 1995, 69(4):2248-2256.
    251. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA: Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997, 16(9):2294-2306.
    252. Liu B, Dai R, Tian CJ, Dawson L, Gorelick R, Yu XF: Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J Virol 1999, 73(4):2901-2908.
    253. Das T, Mathur M, Gupta AK, Janssen GM, Banerjee AK: RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proc Natl Acad Sci U S A 1998, 95(4):1449-1454.
    254. Johnson CM, Perez DR, French R, Merrick WC, Donis RO: The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1. J Gen Virol 2001, 82(Pt 12):2935-2943.
    255. Blackwell JL, Brinton MA: Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA. J Virol 1997, 71(9):6433-6444.
    256. Koopmans M: Progress in understanding norovirus epidemiology. Curr Opin Infect Dis 2008, 21(5):544-552.
    257. Fankhauser RL, Noel JS, Monroe SS, Ando T, Glass RI: Molecular epidemiology of"Norwalk-like viruses" in outbreaks of gastroenteritis in the United States. J Infect Dis 1998, 178(6):1571-1578.
    258. Patel MM, Hall AJ, Vinje J, Parashar UD: Noroviruses: a comprehensive review. J Clin Virol 2009, 44(1):1-8.
    259. Siebenga J, Kroneman A, Vennema H, Duizer E, Koopmans M: Food-borne viruses in Europe network report: the norovirus GII.4 2006b (for US named Minerva-like, for Japan Kobe034-like, for UK V6) variant now dominant in early seasonal surveillance. Euro Surveill 2008, 13(2).
    260. Siebenga JJ, Vennema H, Renckens B, de Bruin E, van der Veer B, Siezen RJ, Koopmans M: Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J Virol 2007, 81(18):9932-9941.
    261. Green KY, Lew JF, Jiang X, Kapikian AZ, Estes MK: Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J Clin Microbiol 1993, 31(8):2185-2191.
    262. Myrmel M, Rimstad E: Antigenic diversity of Norwalk-like viruses: expression of the capsid protein of a genogroup I virus, distantly related to Norwalk virus. Arch Virol 2000, 145(4):711-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700