小麦TaCBL和TaWRKY基因家族的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物在干旱、高温、低温或高盐等非生物胁迫后其生长发育会受到影响,并最终导致产量降低。研究表明,植物中CBL和WRKY两个基因家族在应答胁迫反应中具有重要的调控功能。本研究以小麦为研究对象,从全基因组水平对TaCBL和TaWRKY两个基因家族进行了生物信息学分析,最终克隆鉴定了6个TaCBL基因及7个TaWRKY基因,完成了小麦逆境胁迫前后基因表达水平分析和转基因功能鉴定,以期为小麦抗逆分子机理积累有价值的信息和资料。主要结果如下:
     1.克隆了6个小麦TaCBL基因,分别命名为TaCBL1、TaCBL2、TaCBL3、TaCBL4、TaCBL5、 TaCBL6、通过序列分析发现TaCBL基因分别含有292、213、226、225、225、215个氨基酸残基,蛋白质结构分析表明,6个TaCBL基因都含有4个典型的钙结合蛋白必须的EF-hand结构域,TaCBL2含有2个CBL基因必须的N-豆蔻酰化位点,其它TaCBL基因含有1个N-豆蔻酰化位点。通过对小麦、水稻、拟南芥的CBL基因进行遗传进化分析,发现CBL基因共分成4组,其中TaCBL3、TaCBL4和TaCBL5归入了其中1组,其它3个基因分别归入其它3组,预示TaCBL基因可能有不同的生物学功能。
     2.对6个TaCBL基因在不同组织器官的表达分析表明,TaCBL基因的表达具有组织特异性,TaCBL3和TaCBL4基因在雄蕊中高丰度表达而在其它器官中表达量极低。对6个TaCBL基因在胁迫处理下的表达分析表明,TaCBL基因对胁迫的响应较慢,暗示这些基因不是处于调控的最上游;同一TaCBL基因对不同胁迫处理有着相似的应答模式,如TaCBL1在高温、ABA、氧化、高盐、干旱胁迫中,胁迫初期其表达量微量下调,但到12h时,其表达量出现了剧烈上调,说明同一CBL基因可能参与了植物的多种胁迫应答反应;同一胁迫处理,不同的TaCBL基因也有着相似的应答反应,如高温处理时,6个TaCBL基因都出现了上调表达,干旱胁迫时,TaCBL5和TaCBL6基因都出现了持续剧烈的上调表达,说明不同的TaCBL基因可能存在功能上的冗余;同一TaCBL基因对不同的逆境处理有的也存在着截然不同的应答机制,例如TaCBL4基因在高温处理时,其出现了持续上调表达的应答模式,但在ACC、MeJA处理时却出现了持续下调的表达模式。
     3.通过对6个TaCBL基因在拟南芥中超表达对其功能进行了分析,结果表明,超表达TaCBL1、 TaCBL2、TaCBL5、TaCBL6基因的拟南芥植株其耐盐性降低,超表达TaCBL4基因的拟南芥植株耐盐性和抗旱性得到了提高;超表达TaCBL1、TaCBL2基因的拟南芥植株其抗旱能力反而下降;TaCBL2、TaCBL4基因可能参与了小麦对钾离子的吸收和转运;TaCBL2、TaCBL3基因在小麦的高温应答反应中起作用。
     4.在实验室前期工作基础上,我们对7个小麦TaWRKY基因进行了功能分析。结果表明,超表达TaWRKY10基因促进拟南芥提前开花,超表达TaWRKY53a基因拟南芥侧根增多。TaWRKY53a、TaWRKY68a、TaWRKY71、TaWRKY72b基因的超表达提高了拟南芥的抗旱能力。TaWRKY10基因的超表达提高了拟南芥的耐热性。
Abiotic stress is one of the major constrains for crop production. The crops are challenged by different kinds of abiotic stresses such as drought, high and low temperatures and salinity in different developmental stages, resulting in yield reduction. The calcineurin B-like (CBL) and WRKY gene families were found to be an important player in stress response. In this study, the CBL and WRKY gene families were analyzed in whole genome scale using bioinformatic tools in high temperature resistant wheat (Triticum aestivum L.) lines. Temporal and spatial expression patterns of the TaCBL and TaWRKY genes and their biological function were characterized. The main results are as follows:
     1. Six TaCBL genes, TaCBLl, TaCBL2, TaCBL3, TaCBL4, TaCBL5and TaCBL6, were identified from the hexaploid wheat genome. Protein structure analyses showed that these genes belong to calcineurin B-like proteins with EF-hand motifs and N-myristoylation domains. Phylogenetic analysis indicated thatthe CBL genes were classified into four different groups in wheat, rice and Arabidopsis, indicating different biological functions of the TaCBL genes.
     2. Tissue-specific expression patterns of the six TaCBL genes were observed. The real time PCR analyses showed that the TaCBL genes response slowly to stress, indicating that they were not likely involved in the upstream of stress regulation pathway. The TaCBL genes showed similar expression pattern to different stress treatment, relative low expression level in the initial stress treatments and an intense up-regulation after12h of the TaCBLl was recorded after high-temperature, ABA, oxidation, high salt and drought treatments, indicating the TaCBL genes were involved in various stress response. Meanwhile, different TaCBL genes expressed similar stress responses to the same stress treatment, for example, all the six TaCBL genes were up regulated by high temperature treatment, both TaCBL5gene and TaCBL6were dramatically up-regulated by drought treatment, suggesting that they may have functional redundancy. Distinct response mechanism for different stress treatments was also observed. The TaCBL4showed steady up-regulation to high-temperature treatment, but down-regulation to ACC and Me JA treatments.
     3. The biological functions of the six TaCBL genes were characterized by overexpression analyses in Arabidopsis. The results indicated that overexpression of TaCBLl, TaCBL2, TaCBL4, TaCBL5and TaCBL6reduced salt tolerance while overexpression of TaCBL4enhanced salt tolerance in Arabidopsis. Overexpression of TaCBLl and TaCBL2reduced drought tolerance, but overexpression of TaCBL4increased the drought tolerance of Arabidopsis. We proposed that TaCBL2and TaCBL4might involve in the potassium ionic absorption and transportation pathway, leading to stress responses.
     4. Further more, the expression patterns of seven TaWRKY genes were analyzed by Real time PCR and overexpressed in Arabidopsis. The results showed that TaWRKY10and TaWRKY53a might be involved in wheat morphogenesis. Overexpression of TaWRKY10shorten the flowering time and overexpression of TaWRKY53a increased the lateral root number of Arabidopsis. The results also indicated that TaWRKY19a, TaWRKY53a, TaWRKY68a, TaWRKY11and TaWRKY72b played positive regulatory role in salt stress response, while TaWRKY53a, TaWRKY68a, TaWRKY71and TaWRKY72b enhanced drought tolerance in Arabidopsis. The TaWRKY10also enhanced heat tolerance in Arabidopsiand. TaWRKY46, TaWRKY71, TaWRKY72b might be involved in the ABA regulatory pathway.
引文
1. Aguilar P S, Hernandez-Arriaga A M, Cybulski L E, et al. Molecular basis of thermosensing:a two-component signal transduction thermometer in Bacillus subtilis [J]. The EMBO journal,2001, 20(7):1681-1691.
    2. Albrecht V, Ritz O, Linder S, et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases [J]. The EMBO journal,2001,20(5):1051-1063.
    3. Albrecht V, Weinl S, Blazevic D, et al. The calcium sensor CBL1 integrates plant responses to abiotic stresses [J]. The Plant Journal,2003,36(4):457-470.
    4. Alexandrova K S, Conger B V. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata) [J]. Plant Science,2002,162(2):301-307.
    5. Amtmann A, Armengaud P. The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency:new answers to old questions [J]. Cell research,2007,17(6): 483-485.
    6. Andreasson E, Jenkins T, Brodersen P, et al. The MAP kinase substrate MKS1 is a regulator of plant defense responses [J]. The EMBO journal,2005,24(14):2579-2589.
    7. Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity [J]. Nature,2002,415(6875):977-983.
    8. Ay N, Irmler K, Fischer A, et al. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana [J]. The Plant Journal,2009,58(2):333-346.
    9. Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta,2004,219(6):915-924.
    10. Batistic O, Sorek N, Schultke S, et al. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis [J]. The Plant Cell Online,2008,20(5):1346-1362.
    11. Bobb A J, Chern M S, Bustos M M. Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF [J]. Nucleic acids research,1997,25(3): 641-647.
    12. Cheong Y H, Chang H S, Gupta R, et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J]. Plant Physiology,2002,129(2):661-677.
    13. Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J]. The Plant Cell Online,2003,15(8):1833-1845.
    14. Cheong Y H, Pandey G K, Grant J J, et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis [J]. The Plant Journal,2007,52(2):223-239.
    15. D'Angelo C, Weinl S, Batistic O, et al. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J]. The Plant Journal,2006,48(6):857-872.
    16. de Pater S, Greco V, Pham K, et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis [J]. Nucleic acids research,1996,24(23):4624-4631.
    17. Deng X, Hu W, Wei S, et al. TaCIPK29, a CBL-Interacting Protein Kinase Gene from Wheat, Confers Salt Stress Tolerance in Transgenic Tobacco [J]. PloS one,2013,8(7):e69881.
    18. Deng X, Zhou S, Hu W, et al. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco [J]. Physiologia plantarum,2013,149(3):367-377.
    19. Devaiah B N, Karthikeyan A S, Raghothama K G WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiology,2007,143(4): 1789-1801.
    20. Drerup M M, Schlucking K, Hashimoto K, et al. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Molecular plant,2013,6(2):559-569.
    21. Du L, Chen Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis[J]. The Plant Journal,2000,24(6):837-847.
    22. Duan M R, Nan J, Liang Y H, et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein [J]. Nucleic acids research,2007,35(4): 1145-1154.
    23. Encinas-Villarejo S, Maldonado A M, Amil-Ruiz F, et al. Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) FaWRKYl and Arabidopsis AtWRKY75 proteins in resistance [J]. Journal of experimental botany,2009,60(11):3043-3065.
    24. Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors [J]. Trends in plant science,2000,5(5):199-206.
    25. Fuglsang A T, Guo Y, Cuin T A, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein [J]. The Plant Cell Online, 2007,19(5):1617-1634.
    26. Gong D, Guo Y, Jagendorf A T, et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance [J]. Plant Physiology,2002,130(1):256-264.
    27. Gong D, Guo Y, Schumaker K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiology,2004,134(3):919-926.
    28. Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance [J]. The Plant Cell Online,2001,13(6): 1383-1400.
    29. Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 2000; 97:3735-^0.
    30. Hara K, Yagi M, Kusano T, et al. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding [J]. Molecular and General Genetics,2000,263(1): 30-37.
    31. Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity [J]. Annual review of plant biology,2000,51(1):463-499.
    32. Hrabak EM, Chan CW, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 2003; 132:666-80.
    33. Hwang Y, Bethke P C, Cheong Y H, et al. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function [J]. Plant physiology,2005,138(3):1347-1358.
    34. Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 2000; 12:1667-77.
    35. Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor [J]. The Plant Cell,2002, 14(6):1359-1375.
    36. Kim BG, Waadt R, Cheong YH, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 2007; 52(3):473-84.
    37. Kim K-N, Cheong Y H, Gupta R, et al. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 2000; 124:1844-53.
    38. Knight H, Knight M R. Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis [J]. Journal of experimental botany,2000,51: 1679-1686.
    39. Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 2004; 134: 43-58.
    40. Kudla J, Xu Q, Harfter K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 1999; 96:4718-23.
    41. Lagace M, Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense [J]. Planta,2004,219(1):185-189.
    42. Lee S C, Lan W Z, Kim B G, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel [J]. Proceedings of the National Academy of Sciences,2007,104(40): 15959-15964.
    43. Li D, Song S, Xia X, et al. Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar [J]. Plant Cell, Tissue and Organ Culture,2012,109(3): 477-489.
    44. Li L, Kim B G, Cheong Y H, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis [J]. Proceedings of the National Academy of Sciences,2006,103(33): 12625-12630.
    45. Li R, Zhang J, Wei J, et al. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress [J]. Progress in Natural Science,2009,19(6):667-676.
    46. Li S, Fu Q, Huang W, et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress [J]. Plant cell reports,2009,28(4):683-693.
    47. Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science 1998; 280:1943-5.
    48. Liu Q, Zhao N, Yamaguch-Shinozaki K, et al. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance [J]. Chinese Science Bulletin,2000,45(11):970-975.
    49. Luo M, Dennis E S, Berger F, et al. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17531-17536.
    50. Mahajan S, Sopory SK, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J,2006,273(5):907-25.
    51. Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley [J]. Plant molecular biology,2004,55(3):399-416.
    52. Martinez-Atienza J, Jiang X, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiology,2007,143(2):1001-1012.
    53. Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis [J]. Plant molecular biology,2004,55(6):853-867.
    54. Osterlund M T, Hardtke C S, Wei N, et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis [J]. Nature,2000,405(6785):462-466.
    55. Pandey GK, Cheong YH, Kim K-N, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 2004; 16:1912-24.
    56. Pandey S, Zhang W, Assmann S M. Roles of ion channels and transporters in guard cell signal transduction [J]. FEBS letters,2007,581(12):2325-2336.
    57. Petricka J J, Benfey P N. Root layers:complex regulation of developmental patterning [J]. Current opinion in genetics & development,2008,18(4):354-361.
    58. Plieth C, Hansen U P, Knight H, et al. Temperature sensing by plants:the primary characteristics of signal perception and calcium response [J]. The Plant Journal,1999,18(5):491-497.
    59. Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis [J]. Environmental and Experimental Botany,2009,65(1):35-47.
    60. Quan RD, Lin HX, Mendoz I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 2007; 19:1415-31.
    61. Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity [J]. Trends in plant science,2005,10(2):63-70.
    62. Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis [J]. The Plant Journal,2010,63(3):417-429.
    63. Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco [J]. Plant Physiology,2002,130(3):1143-1151.
    64. Rizzo M, Bernardi R, Salvini M, et al. Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids [J]. Journal of plant physiology,2007,164(7): 945-949.
    65. Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY ranscription factor family, AtWRKY6, is associated with both senescence-and defence-related processes [J]. The Plant Journal,2001,28(2):123-133.
    66. Robatzek S, Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense [J]. Genes & Development,2002,16(9):1139-1149.
    67. Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors [J]. Trends in plant science, 2010,15(5):247-258.
    68. Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling. Plant Cell 2002; 14:401-17.
    69. Sanders D, Brownlee C, Harper J F. Communicating with calcium [J]. The Plant Cell,1999,11(4): 691-706.
    70. Sangwan V, Foulds I, Singh J, et al. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx [J]. The Plant Journal,2001,27(1):1-12.
    71. Seki M, Ishida J, Narusaka M, et al. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray [J]. Functional & integrative genomics,2002,2(6):282-291.
    72. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response [J]. Plant Physiology,1997,115(2):327.
    73. Singh K B. Transcriptional regulation in plants:the importance of combinatorial control [J]. Plant Physiology,1998,118(4):1111-1120.
    74. Suzuki I, Los D A, Kanesaki Y, et al. The pathway for perception and transduction of low-temperature signals in Synechocystis [J]. The EMBO journal,2000,19(6):1327-1334.
    75. Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana [J]. The Plant Journal,2002,29(4):417-426.
    76. Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms [J]. Annual review of plant biology,1999,50(1):571-599.
    77. Ulker B, Somssich I E. WRKY transcription factors:from DNA binding towards biological function [J]. Current opinion in plant biology,2004,7(5):491-498.
    78. Ullah H, Chen J G, Young J C, et al. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis [J]. Science,2001,292(5524):2066-2069.
    79. Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. The Plant Cell Online,1999,11(9):1743-1754.
    80. Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction [J]. Trends in plant science,2000,5(2):67-74.
    81. Varagona M J, Raikhel N V. The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions:DNA binding and nuclear localization [J]. The Plant Journal,1994,5(2): 207-214.
    82. Wang H, Hao J, Chen X, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants [J]. Plant molecular biology,2007,65(6):799-815.
    83. Wang M, Gu D, Liu T, et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 2007; 65(6):733-46.
    84. Wang Q Y, Nick P. Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid [J]. Plant and Cell Physiology,2001,42(9):999-1005.
    85. Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells [J]. Science,2001,292(5524):2070-2072.
    86. Wang Z, Zhu Y, Wang L, et al. A WRKYtranscription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter [J]. Planta,2009,230(6):1155-1166.
    87. Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco [J]. Plant cell reports,2008, 27(4):795-803.
    88. Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter [J]. Plant cell reports, 2009,28(1):21-30.
    89. Xie Z, Zhang Z L, Zou X, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant physiology,2005,137(1):176-189.
    90. Xie Z, Ruas P, Shen Q J. Regulatory networks of the phytohormone abscisic acid [J].Vitamins & Hormones,2005,72:235-269.
    91. Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell 2002; 14:165-83.
    92. Xiong L, Zhu J K. Abiotic stress signal transduction in plants:molecular and genetic perspectives [J].Physiologia Plantarum,2001,112(2):152-166.
    93. Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress [J]. Plant, Cell & Environment,2002,25(2):131-139.
    94. Xu J, Li HD, Chen LQ, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 2006; 125:1347-60.
    95. Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. The Plant Cell,2006,18(5): 1310-1326.
    96. Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A [J]. Plant Physiology,2004, 135(1):507-515.
    97. Yoda H, Ogawa M, Yamaguchi Y, et al. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants [J]. Molecular Genetics and Genomics,2002,267(2): 154-161.
    98. Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants [J]. Plant cell reports,2014,33(2):203-214.
    99. Zhang J, Peng Y, Guo Z. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants [J]. Cell research,2008,18(4):508-521.
    100. Zhang Y, Wang L. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants [J]. BMC Evolutionary Biology,2005,5(1):1.
    101. Zhou Q Y, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants [J]. Plant Biotechnology Journal,2008,6(5):486-503.
    102. Zhu J K. Plant salt tolerance [J]. Trends in plant science,2001,6(2):66-71.
    103.陈丽.植物转录因子的结构与功能[J].植物生理学通讯,1997,33(6):401-409.
    104.陈欧,王振英.植物WRKY转录因子结构及功能研究进展[J].生物学通报,2008,43(6):10-12.
    105.陈霞,罗世巧,段翠芳,等.高等植物转录因子研究进展[J].安徽农学通报,2008,14(9):48-52.
    106.杜瑞英,杨武德,许吟隆,等.气候变化对我国干旱/半干旱区小麦生产影响的模拟研究[J].生态科学,2006,25(1):34-37
    107.李合生,孙群,赵世杰等,植物生理生化实验原理和技术[M],北京,高等教育出版社,2000,134-137.
    108.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    109.刘强,赵南明,Yamaguch-Shinozaki K,等DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16.
    110.罗付香.氮肥调控对不同小麦品种碳,氮代谢及微量元素的影响[D].四川农业大学,2006.
    111.苏琦,尚宇航,杜密英,等.植物WRKY转录因子研究进展[J].中国农学通报,2007,23(5):94-98.
    112.田延臣,小麦盐诱导表达TaWRKY79、TaWRKY80转录因子基因的克隆及功能分析[D].山东农业大学,2012.
    113.田云,卢向阳,彭丽莎,等.植物WRKY转录因子结构特点及其生物学功能[J].遗传,2006,28(12):1607-1612.
    114.吴华玲,倪中福,姚颖垠,等.15个普通小麦WRKY基因的克隆与表达分析[J].自然科学进 展,2008,18(4):378-388.
    115.吴华玲,普通小麦WRKY转录因子基因家族的克隆和功能研究[D].中国农业大学,2007
    116.姚颖垠,小麦杂交种与亲本之间差异表达基因的分离,克隆与功能鉴定[D].中国农业大学,2005.
    117.杨致荣,王兴春,李西明,等.高等植物转录因子的研究进展[J].遗传,2004,26(3):403-408.
    118.张和臣,叶楚玉,夏新莉,等.逆境条件下植物CBL-CIPK信号途径转导的分子机制[J].分子植物育种,2009,7(1):143-148.
    119.张娟WRKY转录因子功能研究进展[J].西北植物学报,2009(10):2137-2145
    120.张俊文,魏建华,王宏芝,等CBL-CIPK信号系统在植物应答逆境胁迫中的作用与机制[J].自然科学进展,2008,18(8):847-856
    121.张全琪,朱家红,倪燕妹,等.植物bHLH转录因子的结构特点及其生物学功能[J].热带亚热带植物学报,2011,19(001):84-90.
    122.赵涛,普通小麦MADS-box转录因子基因家族的克隆和功能研究[D].中国农业大学,2006.
    123.周春蕾,小麦苗期热胁迫响应基因TaGRP的克隆和功能鉴定[D].中国农业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700