基于逆系统方法的主动容错控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以非线性系统为研究对象,基于逆系统方法研究了SISO系统、MIMO系统的主动容错控制问题,主要进行了以下几方面的研究工作:
     1)针对具有一定故障先验知识的非线性系统,为解决多模型主动容错控制在应对系统发生未知故障时控制律计算的快速性问题,提出了一种基于RBF逆系统方法的多模型内模主动容错控制方案。采用RBF对系统正常及各种先验故障情形的逆系统建模,并由此建立动态系统逆模型库,基于逆系统方法将逆模型与系统串联形成一伪线性系统,并对其设计了具有良好鲁棒性能的内模控制器。系统实际运行时,监控决策机制依据系统性能容忍度指标和模型失配度指标的时实计算分析,诊断系统所处运行模式,调用与之匹配的RBF逆模型,使系统始终通过模型切换与其逆模型的串联保持为不变的伪线性系统,从而在无需改变内模控制器的情况下,实现了对系统故障的主动容错。
     2)针对实际系统故障先验知识不易获取等问题,提出了一种基于RBF逆系统方法的故障诊断和调节的设计方法。通过设计基于非线性被控对象RBF逆模型的故障估计器来估计执行器故障,同时将RBF逆模型与被控对象串联成伪线性的复合系统,并引入内模控制。采用故障估计值作用于被控对象的逆系统,以产生相应的补偿,最终使被控对象和补偿后的逆系统串联仍能保持为不变的伪线性系统,从而在无需改变系统正常控制器参数的情形下,以逆系统补偿的方法达到容错控制的目的。
     3)针对实际系统存在不确定性及各种时变故障,将小样本建模方法LS-SVM引入用于系统的逆建模,借助数据驱动控制思想和无模型自适应控制方法,设计一个补偿控制器,用于系统参数摄动或发生故障时的逆模型的实时补偿,使系统在无需改变主控制参数情形下,以自适应逆补偿的方法,使得系统输出可以准确跟踪参考输出。
     4)针对状态空间形式的多变量非线性可逆系统,首先将逆系统方法引入,提出一种基于逆系统方法的多变量非线性系统故障诊断方法,通过设计非线性鲁棒滑模观测器实现状态估计,并结合逆系统方法,实现多变量非线性系统的执行器故障诊断。在此基础上又设计基于逆系统方法设计控制器,最终通过故障估计值对逆系统调节,实现了MIMO系统的主动容错控制。
In this paper, as the study of nonlinear systems, active fault-tolerant control problems are studied based on inverse system method of the SISO system and MIMO system, mainly carried out research in the following areas:
     1) For certain priori knowledge fault of nonlinear systems, in order to solve the multi-model active fault-tolerant control system in response to an unknown fault of the fast control law calculation problem, proposes an active fault-tolerant control using multi-models based on Radial Basis Function (RBF) inverse system internal model methods. The method first uses RBF set up inverse system modeling for normal and faults with each kind of prior breakdown situation, then buildes inverse model bank for dynamic systems, based on inverse model of inverse system method connect the system become one pseudo-linear system, and designes with a good robust performance of the internal model controller. Actual run-time system, the decision-making mechanism of monitor is being calculated and analysis based on system performance indicators and model of tolerance mismatch index, The diagnosis system locates the movement pattern, call switching RBF inverse model, the system has always been seried with inverse model and remain unchanged pseudo-linear system, thus no need to change the situation of internal model controller for nonlinear systems and to achieve active fault-tolerant control purpose.
     2) For priori knowledge of the actual system faults and other problems is not easy to obtain, an approach of fault diagnosis and accommodation based on RBF inverse system method is designed. Through the design of RBF inverse model of nonlinear plant estimates actuator fault, while RBF inverse model connect the nonlinear plant become pseudo-linear system, and the introduction of internal model control. Estimates using fault acting on the inverse of the paint and to generate the corresponding compensation, and finally to the plant and the compensated inverse series can maintain the same pseudo-linear system, so no need to change the system in the normal control parameters of the case, in order to achieve the purpose of fault tolerant control through the inverse system method of compensation.
     3) For the real system with uncertainty and a variety of time-varying faults, the small sample of LS-SVM modeling method for systems is introducted using inverse modeling, using data-driven control idea and model free adaptive control method, design a compensation controller for real-time compensation when system parameter perturbation or fault occur, the system without changing the main controller parameters in the cases of adaptive inverse compensation method, allows the system output can accurately track the reference output.
     4) For the state space form of multi-variable nonlinear reversible systems, inverse system method is introducted, and a method based on inverse system of multi-variable nonlinear system fault diagnosis is proposed, through the design of nonlinear robust sliding mode observer device to achieve state estimation, and combined with inverse system method, to achieve the implementation of multi-variable nonlinear system fault diagnosis. On the basis of further design of the controller design based on inverse system method, the ultimate the inverse system is accommodated by the fault estimates, to achive MIMO system fault-tolerant control purpose.
引文
[1]Niederlinski A. A heuristic approach to the design of interacting multivariable systems[J]. Automatic,1971,7:691-701
    [2]Saljak D. D., Reliable control using multiple control system[J], Int. J. Control, 1980, Vol.31, pp.303-329.
    [3]Patton R. J., Robustness issues in fault tolerant control[C], Proc. Of. Int. Conf. on Fault Diagnosis, Toulouse, France,1993, pp.1081-1117.
    [4]Patton R. J. Fault-tolerant control:the 1997situation[C], Proc. Of. IFAC/IMACs Symposi- um on Fault Detection, Supervision and Safety for Technical Process, Hull, England,1997, pp.1033-1055.
    [5]Gao Z, Antsaklis P J. Reconfigurable control systems design via perfect model following [J]. International Journal of Control,1992,56 (4):783-798.
    [6]Bin Jiang. Actuator fault tolerant control in nonlinear continuous-time systems[C]. Proceeding of the 6th world congress on intelligent control and automation,2006
    [7]Blanke, M., Staroswiecki, M., and Wu, N. E., Concepts and methods in fault-tolerant control (Tutorial) [C], Proc. of ACC, Arlington, USA,2001.
    [8]Youmin Zhang, Jin Jiang. Bibliographical review on reconfigurable fault-tolerant control systems [J]. Annual Reviews in Control.2008.32(1): 229-252
    [9]Jin Jiang. Fault - tolerant Control Systems - An Introductory Overview [J]. Acta Automatic Sinica.2005,31 (1):161-174.
    [10]Patton R J, C. Kamblampati, A. Casavola, G. Franze. Fault tolerance as a key requirement for the control of modern systems[C].6th IFAC Beijing 2006.26-36
    [11Huajing Fang, Hao Ye, Maiying Zhong. Fault diagnosis of network control systems[J].6th IFAC Beijing 2006.1-12
    [12]Blanke, M., Kinnaert, M., Lunze, J., et al, Diagnosis and Fault-Tolerant Control[M], Springer Verlag Berlin Heidelberg,2003.
    [13]Thomas Steffen:Control Reconfiguration of Dynamical Systems:Linear Approaches and Structural[M]. Springer Verlag Berlin Heidelberg,2005
    [14]Hassan Noura, Didier Theilliol, Fault-tolerant Control Systems:Design and Practical Applications[M]. Springer Verlag Berlin Heidelberg,2009
    [15]叶银忠,潘日芳,蒋慰孙.多变量稳定容错控制器的设计问题,第一届过程控制科学论文报告会论文集[C],1987,pp.203-209。
    [16]叶银忠,潘日芳,蒋慰孙.控制系统的容错技术的回顾与展望,第二届过程控制科学论文报告会论文集[C],1988,pp.49-61
    [17]南英,陈士橹,戴冠中.容错控制进展[J],航空与航天,1993,Vol.4,pp.62-67。
    [18]赵景波.容错控制系统的发展问题研究[J].电气传动自动化,2004,26(4).
    [19]王敏,臧曙,周东华.非线性动态系统的容错控制[J].计算技术与自动化,2004,23(4).
    [20]周东华. 容错控制理论及其应用[J].自动化学报,2000,26(6):65-70
    [21]姜斌,冒泽慧,杨浩,张友民..控制系统的故障诊断与故障调节[M],北京,国防工业出版社,2009
    [22]周东华, 叶银忠.现代故障诊断与容错控制[M],清华大学出版社,2000.
    [23]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005
    [24]闻新,张洪钺,周露等.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998
    [25]葛建华,孙优贤.容错控制系统的分析与综合[M].杭州:浙江大学出版社,1994
    [26]Mehra R. K., and Peschon J., An innovation approach of fault detection and diagnosis in dynamics[J], Automatica,1971, Vol.7, No.5, pp.637-640.
    [27]Willsky A. S., A survey of design methods for failure detection in dynamic systems[J], Automatica,1976, Vol.12, No.6, pp.601-611.
    [28]Himmelblau D. M., Fault detection and diagnosis in chemical and petrochemical process [M], Amsterdam:Elsevier Press,1978.
    [29]Gertler J. J., Survey of model based failure detection and isolation in complex plants[J], IEEE Contr. Sys. Mag.,1988, Vol.8, No.6, pp.3-11.
    [30]Frank P. M., Fault diagnosis in dynamic systems using analytical and knowledge-bases redundancy:A survey and some new results [J], Automatica, 1990, Vol.26, No.3, pp.459-474.
    [31]Patton R. et al., Fault diagnosis in dynamic systems[M], New York:Prentice Hall,1989.
    [32]Zhang X. J., Auxiliary signal design in fault detection and diagnosis[M], Berlin:Springer- Verlag,1991.
    [33]Chen J., and Patton R. J., Robust Model-based Fault diagnosis for Dynamics Systems[M], Boston:Kluwer Academic Publishers,1999.
    [34]周东华,孙优贤.控制系统的故障检测与诊断技术[M],清华大学出版社,1994.
    [35]张爱玲,张文英,张端金.控制系统故障检测与诊断技术的最新进展[J].系统工程与电子技术.2007.29(4).659-664
    [36]Jiang, B., Jianliang Wang and Yengchai Soh, An adaptive technique for robust diagnosis of faults with independent effect on system outputs[J], Int. J. of Control, Vol.75, No.11,2002, pp.792-802.
    [37]W. T Chen, G.. Q. Jia, M Saif, Application of sliding mode observers for actuator fault detection and isolation in linear systems[C]. Proce. of the IEEE Conference on Control Applicatons. Toronto, Canada,2005.1479-1484
    [38]胡作进,杨静宇,朱张青.基于T-S模糊模型的鲁棒故障诊断[J].系统仿真学报.2008.20(21).5848-5852
    [39]Jiang. B., M. Staroswiecki, V. Cocquempot, Fault estimation in nonlinear uncertain systems using robust/sliding mode observers[J]. IEE Proc. -control theory appl.,2004. Vol.151, No.1,29-37
    [40]Zhang, X. D., Polycarpou, M. M, and Parisirii, T., A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems[J], IEEE Trans. On Automatic Control, Vol.47, No.4, pp.576-593.
    [41]颜秉勇,田作华等,基于故障跟踪估计器的非线性时滞系统故障诊断[J].控制与决策.2009.24(1).133-136
    [42]Qin S. J. Li W. Detection and identification of faulty sensors in dynamic processes. ALChE Journal,2001.47,1581-1593.
    [43]Wang J. Qin S. J. A new subspace identification approach based on principle component analysis. Journal of Process Control,2002.12,841-855.
    [44]Li W, Han Z. G.& Shah S. L. Subspace identification for FDI in systems with nonuniformly sampled multirate data. Automatica,2006.42,619-627.
    [45]Ding S. X. Zhang P., Naik A., Ding E. L.& Huang B. Subspace method aided data-driven design of fault detection and isolation systems. Journal of Process Control,2009.19,1496-1510.
    [46]Gary G. Yen and Pedro G. DeLima. Improving the Performance of Globalized Dual Heuristic Programming for Fault Control Through an Online Learning Supervisor[J]. IEEE transactions on automation science and engineering,2005, 2 (2):121-131
    [47]Henrik Niemann, Niels, Kjlstad, Poulsen. Fault tolerant control for uncertain systems with parametric faults [J]. IF AC, Beijing 2006.
    [48]F. Guenab, D. Theilliol, P. Weber, Y.M. Zhang and D. Sauter. Fault tolerant control system design:A reconfiguration strategy based on reliability analysis under dynamic behavior consraints [J]. IFAC, Beijing 2006
    [49]C. Kambhampati, R J Patton, Reconfiguration in networked control systems: Fault tolerant control and Plug-and-play[J]. IFAC 2006. Beijing 151-156
    [50]Ufuk Demirci, Faule tolerant control With Reconfiguration Sliding-mode Schemes[J]. Turk J Elec Engin 2005.13 (1) 175-187
    [51]李雄杰,周东华,陈良光.一类非线性时滞过程的传感器主动容错控制[J].传感技术学报,2007,20(5).
    [52]Wang D, Zhou D H. A Strong Tracking Predictor for Nonlinear Processes with Input Time Delay Computers and Chemical Engineering[J]. Automatica, 2004,18 (12)
    [53]P. Mhaskar, A. Gani, N. H. El-Farra C. McFall, P. D. Christofides, and J. F. Davis. Integrated fault-detection and fault-tolerant controlfor process systems[J]. AIChE J,2006.
    [54]Hai-Jun Rong, Guang-Bin Huang, N. Sundararajan et al. Fuzzy Fault Tolerant Controller for Actuator Failures During Aircraft Autolanding[J]. IEEE International Conference on Fuzzy Systems Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada,2006:1200-1204
    [55]刘春生,胡寿松.基于T-S模糊模型和迭代学习观测器的飞行系统故障容错[J].南京航空航天大学学报.2009.41(1).48-53
    [56]Ding-Li Yu, T. K. Chang and Ding-Wen Yu. Fault Tolerant Control of Multivariable Processes Using Auto-Tuning PID Controller[J]. IEEE transactions on system, man and cybernetics—part B:cybernetics,2005,35 (1):32-43
    [57]Ding-Li Yu, T. K. Chang and Ding-Wen Yu. Adaptive neural model-based fault tolerant control for multi-variable processes[J]. Engineering Applications of Artificial Intelligence,2005,18:393-411
    [58]J. Chen. Fault Tolerance Evaluation of a Neural Predictive Flight Control System[J]. IFAC,2006:1069-1074
    [59]L. F. Mendonca, J. M. C. Sousa_and J. M. G. Sa da Costa. Fault Tolerant Control Using Fuzzy MPC[J]. IFAC, Beijing.2006:1022-1028
    [60]Jovan D B, Li Sai-ming, Raman K M. Intelligent control of spacecraft in the presence of actuator failures[J]. Proceedings of the 38th conference on decision & control, Phoenix, Arizona,1999:4472-4477
    [61]Zhang, Y. and Jiang, J., Integrated active fault-tolerant control using IMM approach[J], IEEE Trans. Aerosp. Electron. Syst.,2001, Vol.37, No.4, pp.1221-1235.
    [62]Jin Jiang and Youmin Zhang. Accepting Performance Degradation in Fault Tolerant Control System Design[J]. IEEE Transaction on Control Systems Technology,2006,14 (2):284-292
    [63]Meel A, As win N V, Ravindra D G. Disturbance classification and rejection using patt-ern recognition methods[J]. Ind. Eng. Chem. Res.,2003,42: 3321-3333
    [64]Yixin Diao, Kevin M. Passino. Intelligent fault-tolerant control using adaptive and learning methods[J]. Control Engineering Practice,2002,10:801-817
    [65]Cuimei Bo, Zhiquan Wang, Jinguo Lin et al. The Online Models based Fault Tolerant Control for Multiple Sensor Fault of Multi-variable Nonlinear Processes[C].2006 International Joint Conference on Neural Networks, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July:16-21
    [66]Gary G. Yen and Pedro G. DeLima. Improving the Performance of Globalized Dual Heuristic Programming for Fault Control Through an Online Learning Supervisor[J].IEEE transactions on automation science and engineering,2005, 2 (2):121-131
    [67]张建华,史运涛,侯国莲,张荫芬.燃煤电厂协调控制系统故障诊断与容错控制应用研究[J].中国电机工程学报.2004,24(8):1975-1978
    [68]Abbas Chamseddine, Hassan Noura. Sensor fault detection, identification and fault tolerant control:application to active suspension[J]. Proceeding of the 2006 American control conference,2006:176-183
    [69]李炜,许德智,李二超.基于RBF网络的逆系统多模型内模主动容错控制[J].华中科技大学学报,2009,S(1):98-101
    [70]Jiang. B, M. Staroswiecki, V. Cocquempot, Fault accommodation for a class of nonlinear dynamical systems [J]. IEEE Trans. On Automatic Control,2006,51 (9):1578-1583
    [71]Polycarpou, M. M., Fault accommodation of a class of multivariable nonlinear dynamical systems[J], IEEE Trans. Automatic Control,2001, Vol.46, pp.736-742.
    [72]Jiang, B. Chowdhuery, F. N. Fault estimation and accommodation for linear MIMO discrete-time systems[J], IEEE Trans. Control System technology, 2005, Vol.13, No.3, pp.493-499.
    [73]李春文,冯元琨,多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [74]李春文、苗原、冯元琨和杜继宏.非线性系统控制的逆系统方法(Ⅰ)—单变量控制理论.控制与决策,1997,12(5):529-535.
    [75]李春文、苗原、冯元琨和杜继宏.非线性系统控制的逆系统方法(Ⅱ)多变量控制理论.控制与决策,1997,12(5):529-535.
    [76]何丹. 非线性系统控制的神经网络逆系统方法[D]. 东南大学.1999
    [77]张怡哲,邓建华.逆系统方法在飞行控制律设计中的工程应用[J].西北工业大学学报.2006.24(1).35-39
    [78]胡广,王勤,孟正大.神经网络α阶逆系统方法在开放式机器人控制器的应用.自动化与仪表,2005,20(5).5-9.
    [79]李春文,张平.一种基于逆系统方法的化学反应器改进控制方案.控制与决策,1998,13(5):577-580
    [80]宋夫华.基于支持向量机的逆系统方法的研究[D].浙江大学.2006
    [81]戴先中.多变量非线性统的神经网络逆控制方法[M].北京:科学出版社,2005
    [82]宋夫华,李平.基于支持向量机α阶逆系统方法的非线性内模控制[J].自动化学报.2007.33(7).778-781
    [83]宋夫华,李平.支持向量机α阶逆系统控制—离散非线性系统[J].浙江大学学报.2006,40(12),2098-2102
    [84]夏常弟,万百五.利用逆系统的故障诊断方法[J].控制理论与应用.1999.16(1).137-140
    [85]李炜,许德智,李二超.基于逆系统方法的非线性系统故障调节[J].兰州理工大学学报.2009.35(5).77-80
    [86]Garcia C E, Morari M. Internal model control—1:a unifying review and some new results[J]. Industrial Engineering Chemistry Process Design and Development,1982,21 (2):308-323.
    [87]Garcia C E, Morari M. Internal model control—2:design procedure for multiv-ariable systems[J]. Industrial Engineering Chemistry Process Design and Devel-opment,1985,24 (3):472-484.
    [88]Zafiriouo, Morari M. Internal model control:robust digital controller synthesis for mu- ltivariable open-loop stable or unstable process[J]. Int J Control,1991, 54 (3):665-704.
    [89]Nahas E P. Nonlinear internal model control strategy for neural network models [J]. Computers Chemical Engineering.1992.16(12):1039-1057.
    [90]Hunt K. J. and Sbarbaro D., Neural networks for nonlinear internal model con- trol[J]. IEEE. Proc Control Theory and Appl.1991. Vol.138, No.5, pp:431-438,
    [91]刘胜,李妍妍,杜延春.基于支持向量机的逆系统内模控制研究及应用[C]. Proceedin- gs of the 6th World Congress on Intelligent Control.and Automation.2006. Dalian. China.6336-6339
    [92]Yao L, Wang A P. Design of a fault tolerant control scheme for two collaborative subsystems[J]. Systems and Control Engineering.2005.27(29): 875-883.
    [93]周涌,陈庆伟,胡维礼,内模控制研究的新发展[J].控制理论与应用.2004.21(3).475-482
    [94]李炜,鲁保云,乔平原.一种基于多模型的主动容错控制方法研究[J].甘肃科学学报,2007,19(4):92-96
    [95]李炜,马克,鲁保云.一种基于BP网络的多模型预测主动容错控制方法[J].甘肃科学学报,2008,20(2):107-111
    [96]侯忠生.非参数模型及其自适应控制理论[M].北京,科学出版社,1999.
    [97]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报.2009.35(6).650-667.
    [98]侯忠生.非线性系统的参数辨识、自适应控制和非参数模型自适应控制[D].东北大学,1994.
    [99]Guardabassi G O, Savaresi S M. Virtual reference direct design method:an off line approach to data-based control system design[J]. IEEE Transactions on Au- tomatic Control,2000,45 (5):954-959
    [100]Campi M C, Savaresi S M. Direct nonlinear control design:the virtual reference feedback tuning (VRFT) approach[J]. IEEE Transactions on Automatic Control,2006,51 (1):15-27
    [101]Nakamoto M. An application of the virtual reference feedback tuning for an MIMO process[J]. In:Proceedings of the 2004 SICE Annual Conference. Sapporo, Japan:IEEE,2004.2208-2213
    [102]Previdi F, Ferrarin M, Savaresi S M, Bittanti S. Closed-loop control of FES supported standing up and sitting down using virtual reference feedback tuning[J]. Control Engineering Practice,2005,13 (9):1173-1182
    [103]崔永超,王永华等.基于支持向量机的软测量建模方法的应用[J].南京工 业大学学报,2007,5:99-102
    [104]谭超.基于支持向量机的软测量技术及其应用[J].传感器技术,2005,24(8):77-79
    [105]吴强,贾传荧,李冰梅.基于Gauss核函数的快速构造最小超球算法[J].大连海事大学学报,2007,33(3):42-46
    [106]陶少辉,陈德钊,胡望明.最小二乘支持向量机分类器的高稀疏化及应用[J].系统工程和电子技术,2007,29(8):1353-1357
    [107]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing letters.1999.9 (3).293-300.
    [108]Suykens J A K, Vandewalle J. Multiclass least squares support vector machines[C]. IJCNN'99 International Joint Conference on Neural Networks. Washington DC.1999.900-903.
    [109]Cortes C, and Vapnik V. "Support vector networks," Machine Learning, 1995. vol.20, pp.273-297.
    [110]张泉灵.预测函数控制及其应用研究[D].杭州:浙江大学,1999.
    [111]孟令雅,姜斌,基于非线性自适应观测器的故障诊断[J].系统工程与电子技术,30(7),2008,1317-1319
    [112]Kabore P, Wang H. Design of fault diagnosis and fault tolerant control for a class of nonlinear systems[J]. IEEE Trans on Automatic Control,2001, 46 (11):1805-1809.
    [113]Zhang Niaona, Feng Yong, Qiu Dong, Robust sliding mode observer design of nonlinear uncertain systems[J]. Control Theory & Applications.2007.24 (5).715-718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700