纳米二氧化钛薄膜离子掺杂和非金属载体交互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了十三种金属离子在釉面瓷砖、玻璃和陶瓷三种非金属载体上负载的二氧化钛薄膜的掺杂行为,首次提出了掺杂离子和二氧化钛薄膜载体之间存在交互效应概念和模型,从载体和TiO_2薄膜的界面结构、双电层结构、复合半导体等方面分析了载体与掺杂离子间的相互作用。通过紫外-可见吸收光谱图分析了釉面瓷砖、玻璃、陶瓷上不同金属离子掺杂对半导体二氧化钛薄膜所引起的纳米量子尺寸效应和半导体能带隙的变化。从离子掺杂浓度、离子半径、离子的电子轨道、以及离子的能级等方面分析了离子掺杂对TiO_2薄膜光催化活性的影响。研究结果表明:
     1、TiO_2薄膜的光催化活性不仅与掺杂离子有关,而且还与载体的类型有关,载体和掺杂离子存在交互效应。
     (1)同一载体上,掺杂不同的离子,TiO_2薄膜的光催化活性不同。其中釉面瓷砖为载体时,掺杂效果最好的离子是Cr~(3+),其次是W~(6+)、Ag~+、Al~(3+)、Cu~(2+)、Fe~(3+)、Zn~(2+)、La~(3+)、Mn~(2+)、Ni~(2+)、V~(5+)、Pb~(2+),最差的为Co~(2+);玻璃为载体时,掺杂效果最好的离子是Cr~(3+),其次是Cu~(2+)、Al~(3+)、Ag~+、Mn~(2+)、W~(6+)、Ni~(2+)、V~(5+)、La~(3+)、Fe~(3+)、Pb~(2+)、Zn~(2+),最差的是Co~(2+);陶瓷为载体时,掺杂效果最好的离子是Fe~(3+),其次是Cu~(2+)、Zn~(2+)、La~(3+)、Co~(2+)、W~(6+)、Mn~(2+)、Cr~(3+)、Al~(3+)、V~(5+)、Ag~+、Ni~(2+),最差的是Pb~(2+)。
     (2)釉面瓷砖、玻璃和陶瓷上同一种离子掺杂对TiO_2薄膜光催化活性的影响不同。由此可以看出,TiO_2薄膜的光催化活性不仅与掺杂离子有关,而且与载体的类型有关,载体不同,离子的掺杂效果也不同。
    
    广西大学硕一L学位论文
    摘要
     (3)T 10:薄膜光催化活性最好的匹配是陶瓷载体和Fe卜穆杂,其次是釉面瓷砖上cr卜
    接杂,然后是陶瓷上C了+掺杂、陶瓷上Zn卜离子掺杂、陶瓷上Laa+掺杂和玻璃上cr”播
    杂。
     (4)掺杂离子后,不同载体上.Ti认薄膜的光催化活性的提离幅度不同。对于釉面瓷
    砖和玻璃来说,播杂cr卜时T 10:薄膜光催化活性的提离幅度都是最大.其中釉面瓷砖
    的提高幅度达到157.27%,玻璃达到155.26%.掺杂其它离子对TIO:薄膜的光催化活性
    影响也很大,如釉面瓷砖上掺杂co卜、Pb卜,提高幅度分别为47.7联、60.27%。对于陶
    瓷来说,有些离子掺杂提高了T 10:的光催化活性,如「e3+、cu卜、zn卜等,但是有些离
    子掺杂却使T 10:光催化活性降低7,如Pb,’、Ni’‘、Ag’等。
     (5)不掺杂时,釉面瓷砖和玻璃上T 10:薄膜的光催化活性较差,但是掺杂某些离子
    后,提高幅度却很大,比如cra+、Cu卜、^l卜等。而负载为陶瓷,不掺杂时Tro,薄膜的
    光催化活性较好,掺杂后,与釉面瓷砖和玻璃相比,提高福度不大,如掺杂效果最好
    的Fe卜,其提高幅度仅为49.83,,。因此,载体和离子的交互作用对T 10:薄膜的光催化
    活性有很大的影响。
    2、通过对载体和Ti02薄膜之间内部结构变化分析以及光谱图分析,进一
    步证实了载体和掺杂离子的交互作用对T 102薄膜光催化活性的影响
     (1)载体和T 10:薄膜(掺杂金属离子)之间的界面结构、双电层结构以及载体与
    TIO:薄膜之间形成的复合半导体对Tio:薄膜的光催化活性有很大的影响.
     (2)不同载体上T 10:薄膜的离子掺杂浓度、离子半径、离子的电子轨道、以及离子
    能级对Ti认薄膜的光催化活性具有较大的影晌。
     (3)不同负载上,部分金属离子掺杂拓宽了光催化剂对可见光的吸收范围,部分离
    子掺杂却使T 10:的吸收光谱发生了蓝移。但是无论是蓝移还是红移,大部分离子修杂
    都提高了T 10:薄膜的光催化活性。
     (4)首次建立了离子掺杂与载体交互作用模型。Tio:薄膜与载体表面之间的能带弯
    曲,改变了推杂离子能级与Ti。:导带(价带)的相对位盆,从而改善或降低了播杂离
    子对光生电子(光生空穴)的捕获能力。
     不同金属离子的掺杂对同一负载上二氧化钦薄膜光催化活性影响不
    
    广西大学硕卜学位论文
    摘要
    同,同一种离子的掺杂对于不同负载上二氧化钦薄膜的光催化性能影响也
    存在一定差异。载体和离子的交互作用对T 1 02薄膜的光催化活性具有很大
    的影响。本研究对于开发新型高效的纳米二氧化钦薄膜光催化材料,具有
    重要的学术价值和指导意义。
This paper systeniically studied 13 metal ions doping behaviours to the TiO2 thin film on different nonmetal substrates ceramic tile, ceramic and glass, and first put forward the interaction concept and model existed between doping ions and substrates. Interaction between substrates and doping ions was analyzed by interface structure, electronic double layer structure and composite semiconductor of substrates and TiO2 thin film and so on. And the changes of quantum size effect and energy gap induced by different ion dopants in TiO2 thin film supported by ceramic tile, glass and ceramic were analyzed by UV-VIS absorption spectra of TiO2 thin-film. Influence of doping ions on potocatalytic activity was analyzed by concentration of dopants, ion radius, ion electronic orbit and ion energy level and so on. The main results of this paper are following:
    1 Potocatalytic activity of TiO2 thin film is not only related with doping ions but also related with subsrates Interacion effect was existed between substrates and dopings.
    (1) For one substrate, the potocatalytic activity of TiO2 thin film can be changed by doping ions. For the ceramic tile substrate, the potocatalytic activity of TiO2 thin film doped Cr3+ is the highest, and W6+ Ag+ Al3+ Cu2+ Fe3+ Zn2+ La3+ Mn2= Ni2+ V5+, Pb2+ is following, the worst one is Co2+. For the glass substrate, the potocatalytic activity of TiO2 thin film doped Cr3+ is the highest, and Cu2+ Al3+ Ag+ Mn2+ W6+ Ni2+, V5+ La3+, Fe3+ Pb2+ Zn2+ is following, the worst one is Co2+. For the ceramic substrate, the potocatalytic activity of TiO2 thin film doped Fe3+ is the highest, and Cu2+, Zn2+, La3+, Co2+, W6+, Mn2+, Cr3+, Al3+, V5+ Ag+ Ni2+is following, Pb2+is the worst.
    (2) The potocatalytic activities of TiO2 thin film doped the same ion on different substrates are different. The potocatalytic activity of TiO2 thin film is related with not only doping ion but also substrates. Doping effect is different with different substrates.
    
    
    (3) The optimum matching for enhancing the potocatalytic activity of TiO2 thin film is doping Fe3+ on the ceramic substrate, then doping Cr3+ on ceramic tile substrate, doping Cu2+ on ceramic substrate, doping Zn2+ on ceramic substrate, doping La3+ on ceramic substrate and doping Cr3+ on glass substrate.
    (4) The enhancement of potocatalytic activity of TiO2 thin film doped ions is different. For ceramic tile and glass substrates, enhancement of TiO2 thin film doped Cr3+ is the largest, 157.27% and 155.26% respectively. Photocatalytic activities of TiO2 thin film doped other metal ions are changed to different extent. Such as TiO2 thin film doped Co2+ Pb2+ supported on ceramic tile, the enhancement of photocatalytic activity is 47.79% 60.27% respectively. For ceramic, some ion dopants enhance photocatalytic activity of TiO2 thin film, such as Fe3+ Cu2+ Zn2+ and so on. However other ions dopants decrease photocatalytic activity of TiO2 thin film, such as Pb2+ Ni2+ Ag+ and soon.
    (5) Photocatalytic activities of TiO2 thin film undoped ions deposited on ceramic tile and glass are very low, but after doping certain ions, both photoactivity can be enhanced greatly. Such as Cr3+ Cu2+ Al3+ and so on. However for cerermic, Photocatalytic activity of TiO2 thin film undoped ions is high, after doping certain ions, the enhancement compared with that of ceramic tile and glass is not obvious. Such as Fe3+ whose doping effect is the best, its enhancement is only 49.83%. As a result, interation between substrates and ions has great effect on potocatalytic activity of TiO2 thin film.
    2. By analyzing the change of internal structure between substrates and doping ions and spectra results, it was verified further that interaction between substrates and doping ions affects greatlyhave effect on potocatalytic activity of TiO2 thin film.
    (1) Interface structure and double electronic double layer structure of substrate and TiO2 thin film (doping metal ion), composite semiconductor produced by interaction between substrates and TiO2 thin film have great effect on potocatalytic
引文
[1] P. Suppan, Chemistry and Light, Royal Society of Chemistry, Cambridge, 1994, p.5.
    [2] E. Becquerel, C.R. Acad. Sci. 9 (1839) 561.
    [3] W.H.Brattain,C.G.B. Garret, Bell. Syst. Tech. J. 34 (1955) 129.
    [4] A. Perret, J. Chim. Phys. 23 (1926) 97.
    [5] E. Keidel, Furben Zeitung 34 (1929) 1242.
    [6] C. E Goodeve, J.A. Kitchener, Trans. Faraday Soc. 34 (1983) 570, and references cited therein.
    [7] S.E Pappas, R.M. Fischer, J. Paint Technol. 46 (1974) 65.
    [8] H. Cerischer. in H. Eyring, D. Henderson, W. Jost (Eds.), Physical Chemistry--An Advanced Treatise, Academic Press, New York, 1970, pp. 463-542.
    [9] V. A. Myamlin, Y. Pleskov, Electrochemistry of Semiconductors, Plenum, New York, 1986.
    [10] Y. V. Pleskov, Y.Y. Gurevich, Semiconductor Photoelectrochemisty, Plenum, New York, 1986.
    [11] Y. V. Pleskov, Solar Energy Conversion, Springer-Verlag, Berlin. 1990.
    [12] A. Fujishima, K. Honda, S. Kikuchi, Photosensitized electrolytic oxidation on semiconducting n-type TiO_2 electrode, Kogyo Kagaku Zasshi 72 (1969) 108-113.
    [13] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
    [14] A. Fujishima, K. Kobayakawa, K. Honda, Hydrogen production und er sunlight with an electrochemical photocell, J. Electrochem. Soc. 122 (1975) 1487-1489.
    [15] W. Jaegermann, The semiconductor/electrolyte interface: a surface science approach, in: R.E. White, B.E. Conway, J. O'M. Bockris(Eds.), Modem Aspects of Electrochemistry, Vol. 30, Plenum Press, New York, 1996, pp. 1-185.
    [16] A.J. Nozik, R. Memming, Physical chemistry of semiconductor-liquid interfaces, J. Phys. Chem>100 (1996) 13061-13078.
    [17] A. Fujishima, D. A. Tryk, Photoelectrochemical Convesion, in: K. Honda (Ed.), Functionality of Molecular Systems, Vol. 2, Springer, Tokyo, 1999, pp. 196-224.
    [18] N. Sato. Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, Amsterdam, 1998.
    
    
    [19] L. M. Peter, Photoelectrochemical kinetics at semiconductor electrodes, in: R.G Compton, G Hancock (Eds.), Applications of Kinetic Modeling, Vol. 37, Elsevier, Amsterdam, 1999, pp. 223-279.
    [20] A Fujishima, D.A. Tryk, Photoelectrochemical Conversion Electrodes, Elsevier, Amsterdam, 1998.
    [24] T. Watanabe, A. Fujishima, K. Honda, Photoelectrochcmical reactions at SrTiO_3 single crystal electrode, Bull. Chem. Soc. Jpn. 49 (1976) 355-358.
    [25] M. S. Wrighton, Photoelectrochemical conversion of optical energy to electricity and fuels, Ace. Chem. Res. 12 (1979) 303-310.
    [26] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
    [27] R. W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem. 91 (1987)3328-3333.
    [28] C. Anderson, A.J. Bard, An improved photocatalyst of TiO_2/SiO_2 prepared by a sol-gel synthesis, J. Phys. Chem. 99 (1995) 9882-9885.
    [29] A. Heller, Chemistry and applications of photocatalytic oxidation of thin organic films, Ace. Chem. Res. 28 (1995) 503-508.
    [30] I. Sopyan, S. Marasawa, K. Hashimoto, A. Fujishima, Highly efficient TiO_2 film photocatalyst, degradation of gaseous acetaldehyde, Chem. Lett. (1994) 723-726.
    [31] N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Preparation of transparent TiO_2 thin film photocatalyst and its photocatalytic activity, Chem. Lett. (1995) 841-842.
    [32] I. Sopyan, M. Watanabe, S. Marasawa, K. Hashimoto, A. Fujishima, Efficient TiO_2 powder and film photocatalysts with rutile crystal structure, Chem. Lett. (1996) 69-70.
    [33] I. Sopyan, M. Watanabe, S. Marasawa, K. Hashimoto, A. Fujishima, An efficient TiO_2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J. Photochem. Photobiol. A: Chem. 98 (1996) 79-86.
    [34] I. Sopyan, M. Watanabe, S. Marasawa, K. Hashimoto, A. Fujishima, A film type potacatalyst incorporating highly acti ve TiO_2 powder fluororesin binder: photocatalytic activity and long-term stability, J. Electroanal. Chem. 415 (1996) 183-186.
    [35] S. Matsushita, T. Miwa, A. Fu.jishima, Priparation of a new nanostructured TiO_2 surface using a two-dimensional array-based template, Chem. 415 (1996) 925-926.
    
    
    [36] S. Matsushita, T. Miwa, D.A. Tryk, A. Fujishima, New mesostructured porous TiO_2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir 14(1998) 6441-6447.
    [37] A. Mills, S. LeHunte, J. Photochem. Photochem. Photobiol. A: Chem. 105 (1997), 1 and references therein.
    [38] K. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima, J. Phys. Chem. 102 (1998) 2117.
    [39] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto. J. Phys. Chem., in press.
    [40] R. I. Bickley, F.S. Stone. J. Catal. 31 (1973) 389.
    [41] R. I. Bicklcy, V. Vishwanathan, Nature 280 (1979) 306.
    [42] H. V. Damme, W.K. Hall, J. Am. Chem. Soc. 101 (1979) 4373.
    [43] P. F. Scharz, N.J. Turro, S.H. Bossmann, A.M. Fraun, A.-M.A. Abdel Wahab, H. Drift, J. Phys. Chem. B 101 (1997)7127.
    [44] C. S. Turchi, D.F. Ollis, J. Catal. 122 (1990) 178.
    [45] C. D. Jaeger, A.J. Bard, J. Phys. Chem. 83 (1979) 3146.
    [46] J. R. Harbour, M.L. Hair, Adv. Colloid Interface Sci. 24 (1986) 103.
    [47] G, Riegel, J.R. Bolton, J. Phys. Chem. 99(1995) 4215.
    [48] M. R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69.
    [49] D. F. Ollis, E. Pelizetti, N. Serpone, Environ. Sci. Technol. 25 (1991) 1523.
    [50] A. Heller, Ace. Chem. Res. 28 (1995) 503.
    [51] M. Schiavello, Photocatalysis and Environment, Kluwer Academic Publishers, Dordrecht, 1998.
    [52] N. Serpone, Res. Chem. Intermed,. 20(1994) 953.
    [53] A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. (1993)417.
    [54] D. F. Ollis, C. Turchi, Environ. Prog. 9 (1990) 229.
    [55] M. A. Fox, M.T. Dulay, Chem. Rev. 93 (1993)341.
    [56] P. Pichat, Catal. Today 19 (1994) 313.
    [57] N. Negishi, T. lyoda, K. Hashimato, A. Fujishima, Chem. Lett.(1995) 841.
    [58] H. Matsubara, M. Takada, S. Koyama, K. Hashimato, A. Fujishima, Chem. Lett. (1995) 767.
    [59] K. Hashimato, A. Fujishima, Denki Kagaku 60 (1992) 1057.
    [60] T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimato, A. Fujishima, in: D.E. Ollis, H. Al-Ekabi (Eds.), Photocatalytic Purification and Treatment of Water and Air, Elsevier, New York,
    
    1993.
    [61] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimato, A. FUjishima, J. Photochcm. Photobiol. A: Chem. 106 (1997) 51.
    [62] I. Sopyan, S. Murasawa, K. Hashimoto, A. Fujishima, Chem. Lett. (1994) 723.
    [63] Y. Ohko, K. Hashimoto, A. Fujishima, J. Phys. Chem. A 101 (1997) 8057.
    [64] P. Sawunyama, L. Jiang, K. Hashimoto, A. Fujishima, J. Phys. Chem. B 101 (1997) 11000.
    [65] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Environ. Sci. Technol. 32 (1998) 726.
    [66] D. F. Ollis, C.-Y. Hsiao, L. Budiman, C.-L. Lee, J. Catalo. 88 (1984) 89.
    [67] H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M.A. Fox, R.B. Draper, Langmuir 5 (1989)250.
    [68] K. Okamoto, Y. Yamamoto, H. Tanaka, A. Itaya, Bull. Chem. Soc. Jpn. 58 (1985)2023.
    [69] M. Fujihira, Y. Satoh, T. Osa, Nature 293 (1981) 206.
    [70] C. Richard, J. Photochem. Photobiol. A. 72 (1993) 179.
    [71] Y. Mao, C. Schoneich, K.D. Asmus, J. Phys. Chem. 95 (1991) 80.
    [72] E, R. Carraway, A.J. Hoffman, M.R. Hoffmann,Environ. Sci.Technol. 28 (1994) 786.
    [73] R. B. Draper, M.A. Fox, Langmuir 6 (1990) 1396.
    [74] G. Grabner, G.Z. Li, R.M. Quint, R. Quint, N. Getoff, J. Chem. Soc., Faraday Trans. 87 (1991)1097.
    [75] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Electrochem. Commun. 2 (2000) 207.
    [76] Ken-ichi Ishibashi, Akira Fujishima, Toshiya Watanabe, Kazuhiiito Hashimoto. J. Journal of Photochemistry and Photobiology A: Chemistry 134 (2000) 139-142.
    [77] C.S. Turchi, D.F. Ollis, J.A. Turner, A.J. Nozik, J. Phys. Chem. 95(1991) 221.
    [78] M.W. Peterson, J.A. Turner, A.J. Nozik, J. Phys. Chem. 95 (1991) 221.
    [79] C.Richard, J. Lemaire, J. Photochem. Photochem.Photobiol. A: Chem.55(1990)127.
    [80] Herrmann J. M, Guillard C, Pichat P. Catalysis Today. 1993, 17: 7-20.
    [81] 李晓平,徐宝琨,刘国范等.功能材料,1999,30: 242-245.
    [82] 沈伟韧,赵文宽,贺飞等.化学进展,1998, 10: 349-361.
    [83] Khalil L. B, Mourad W E, Rophael M. W. Appl. Catal. B: Environ. 1998, 17: 267-273.
    [84] Yamashita H, Ichihashi Y, Anpo M. et al. J. Phys. Chem. 1996,100:16041-16044.
    [85] Yamashita H, Ichihashi Y, Harada M. et al. J. Catal. 1996, 158,97.
    [86] Serpone N. Solar Energy Materials and Solar Cells. 1995, 38: 369-379.
    
    
    [87] 祖庸,雷闫盈,李晓娥等.现代化工.1999,19:46-48.
    [88] 伊藤喜吕.工业材料.1997,45:59-61.
    [89] 彭晓春,陈新庚等,n-TiO_2光催化机理及其在环境保护中的应用研究进展,环境污染治理技术与设备,2002(3).
    [90] Anderson C, Bard A J. An Improved Photocatalyst of TiO_2/SiO_2 Prepared by Sol-Gel Synthesis. J Phys Chem, 1995, 99(24):9882.
    [91] Al-Ekabi H, Serpone N, Kinetic Studies in Heterogeneous Photocatalysis 1. Photocatalytic Degradation of Chlorinated Phenols in Aerated Aqueous Sdutions over TiO_2 Supported on a Glass Matrix. J. Phys Chem, 1988,92(20):5726.
    [92] 孔令人,陈曦等.附着态半导体光催化剂光解可溶性燃料的研究.环境科学学报,1996,17(4):406.
    [93] Tanaka K, Hisanaga, T, Chin I. JP08318166, 1996,1996(Chem Absr, 1997, 126: 121928).
    [94] 钟顺和,王杰慧等,TiO_2-SiO_2表面复合物的制备与表征,石油化工,1993,22(5):307.
    [95] 余家国,赵修建.热处理工艺对TiO_2纳米薄膜光催化性能的影响[J].硅酸盐学报,1999,27(6):769-773.
    [96] 魏宏斌,徐迪民.固定相TiO_2膜的制备及其光催化活性[J].中国给水排水.2002,18(7):57-59.
    [97] 陈士夫,梁新,赵梦月等.不同制备条件对TiO_2/beads光催化活性的影响[J].感光科学与光化学.1999,17(1):1-6.
    [98] 赵青南,余家国,赵修建,溶胶-凝胶法制备釉面瓷砖表面TiO_2涂层的XPS研究及其光催化性能,中国陶瓷.1999,35(1):16-18.
    [99] Litter M I, Navio J A, J. Photochem. Photobile., A: Chem., 1996, 98 (3): 171-181.
    [100] Choi W, Termin A, Hoffmann M R. J. Phys. Chem. 1994, 98(51): 13669-13679.
    [101] Yamashita H, Anpo M, Kagaku, 1997,52(9),74.
    [102] Sukharev V, Kershaw R, Concerning the role of oxygen in photocatalytic decomposition of salicylic acide in water. J. Photochem. Photobiol. A: Chem., 1996, 98 (3): 165-170.
    [103] Liu D, Kamat P V, J. Electroanal. Chem. Interfacial Electrochem., 1993,347:451-456.
    [104] Sukharev V, Kershaw R, J. Photochem, Photobiol. A: Chem., 1996, 98(3): 165-169.
    [105] Bedja I, Kamat P V, J. Phys. Chem., 1995,99(22): 9182-9188.
    [106] Do Y R, Lee W, Dwight K et al., J. Solid State Chem., 1994,108(1): 198-201.
    
    
    [107] 王传义,余刚,蒋展鹏.半导体光催化剂的表面修饰.高等学校化学学报,1998,19(12):2013.
    [108] Kamat P V, Fox M A, Fatiadi A J. Dye-Loaded Polymer Electrodes. 2. Photoelectrochemical Sensitization of Croconate Violet in Polymer Films. J Am Chem Soc, 1984, 106(5): 1191.
    [109] Nakaoka Y, Nosaka Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO_2 powder[J]. J Photochem Photobio A: Chem, 1997, 111(1): 229-305.
    [110] 王晓萍,博士学位论文.中国科学院上海硅酸盐研究所.2000.
    [111] Chao He et al Influence of silver doping on the photocatalytic activity of titania films[J], Applied Surface Science 200 (2002): 239-247.
    [112] Iwasaki M, Hara M, Kawada K, et al. J. Colloid and Interface Sci. 2000,224:202-204.
    [113] 于向阳,程继健,铁铬离子掺杂对TiO_2薄膜光催化活性的影响[J].无机材料学报.2001,16(4):742-746.
    [114] D.W. Bahnemann, S.N. Kholuiskaya, R. Dillert d, A.I. Kulak c, A.I. Kokorin. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Applied Catalysis B: Environmental 36 (2002): 161-169
    [115] 钱斯文,王智宇,王民权.La~(3+)掺杂对纳米TiO_2微观结构及光催化性能的影响[J].材料科学与工程学报.2003,21(1):48-52.
    [116] 孙晓君,井立强等,掺Pb的TiO_2纳米功能材料的制备及其光催化性能[J].压电与声光.2002,24(3):232-235.
    [117] 成应之,张渊明,唐渝.催化学报.2001,22:203-205.
    [118] 刘畅,暴中钟,杨祝红,等.催化学报.2001,22(2):215-218.
    [119] Yu Jimmy C, Lin Jun, Raymund W M Kwok. T r_(1-x)Zr_xO_2 solid solutions for the photocatalytic degradation of acetone in air[J]. J Phys Chem B, 1998, 102: 5094~5098.
    [120] 水淼,岳林海,徐铸德.[J].物理化学学报,2001,17(3):282.
    [121] 余锡宾,王桂华,罗衍庆等.上海师范大学学报(自然科学版)(Yu X B,Wang G H,Luo Y Q et al. J Shanghai Teachers Univ (Narur Sci)), 2000, 29 (1): 75
    [122] Choi W, Terrain A, Hoffmann M R. J. Phys. Chem. 1994, 98(51): 13669-13679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700