三维对流云数值模式的改进与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来中国科学院大气物理研究所已建立和发展了一个具有人工影响天气催化模拟功能的三维对流云数值模式(简称IAP-CSM3D)。为了更合理地模拟人工催化冰晶的作用,本文对该模式中催化部分的人工冰晶参数化方案进行了改进,将人工冰晶和自然冰晶作为两种不同的冰晶分开来处理,把人工冰晶作为单独预报量,并考虑播撒粒子是按一定谱型分布的。假定人工播撒粒子的谱型与自然冰晶谱型相似,为双参数粒子谱,推导出人工冰晶与其它水成物粒子之间发生相互作用的微物理过程参数化方程,列出有关微物理过程的源汇项,给出人工冰晶比含水量和比数浓度的预报方程。并对Grads作图界面进行相应的修改,使改进后的三维对流云模式所模拟的微物理过程可以直观的通过图形界面显示出来。
     利用改进后的三维对流云数值模式,详细模拟了2005年7月8日发生在辽宁省朝阳市的一次冰雹云天气过程,模拟的自然云与实际观测较为吻合。进而进行了不同剂量、不同播撒时间的AgI催化剂播撒试验,结果表明,当催化剂量由少到多增加时,降雹量越来越少,但当催化剂量增加到一定的值时,降雹量不再继续减少,因此,催化剂的用量并不是越多越好。使用相同剂量的催化剂在不同时间进行播撒,发现随着催化时间后移,降雨量是增大的,而降雹量是先减少后增加。使用改进前和改进后的模式分别进行催化试验,改进前后的模式都取得了较好的催化效果,但是在催化部位、时间、剂量相同的情况下,改进后模式的消雹效果要比原模式好。本文还分析了人工冰晶的微物理过程。
     另外,本文使用改进后的三维流云数值模式模拟了发生于3个不同地区的强对流风暴个例,发现冰雹的产生与强上升气流区有较好的对应关系,模拟自然云雷达回波能比较好的显示出强对流风暴的特征,并总结出较好的催化时机。
On the base of the IAP Three-Dimensional Convective Storm Model (IAP-CSM3D), its parameterization of cold-cloud seeding function was improved. Natural ice crystals and artificial ice crystals were entirely detached. In the ameliorated model, artificial ice crystals by cloud seeding were treated as a separate predictand. The spectrum of artificial ice crystal was considered as double-moment parameterization to more accord with fact. And parameterization equations of microphysical processes that contact with artificial ice crystals were also deduced.The interface of Grads was also changed to intuitionistically display the microphysical processes of convetive cloud simulated by the improved IAP-CSM3D.Then a hailstorm event occurred at Chaoyang City on July 8, 2005, was simulated by the improved IAP-CSM3D. The simulated cloud was in accord with the observation. A series of Agl-seeding experiments of the cloud were carried out by different seeding amount and different seeding time. The results show that the more AgI used, the little hailfall is. But when the amount of AgI is too more, the amount of hailfall will become increasing. So the amount of AgI is not too more too better. When the same dosage of AgI seeding was used at different time, the simulated results show that the later seeded the more rainwater get down and the hailstone is reduced in the early but increased in the latter. The improved IAP-CSM3D is better than the older in the effect of reducing hailstone.In addition, three strong convective storm events were simulated by the improved IAP-CSM3D. The results show that the hailstone-producing area has a good relation with fierce updraft. The characters of strong hailstorm were better showed on the simulated natural cloud radar echo. Suitable seeding time is also summarized.
引文
[27] 林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展.2001,16(3).[
    [28] 林家浩,李建俊,张文首.结构受多点非平稳随机地震激励的响应[J].力学学报.1995,27(5)
    [29] 林家浩.非平稳随机地震响应的精确高效算法[J].地震工程与工程震动.1993,13(1).
    [30] Zienkiewicz O C. The Finte Element Method Third Edition. McGraw-Hill, Inc., 1977
    [31] Kiureghian A D. Structural response to stationary random excitantion. J. Eng. Mech. Div. ASCE, 1980, 106 (6): 1195-1213
    [32] Vanmarcke, E H, Fenton, G A. Conditioned simulation of local fields of earthquake ground motion. Structural safety, 1991, 10: 247-264
    [33] 中国实验快堆设计文件,屏蔽体壳体图册(A01A-16-00)
    [34] NASTRAN/PATRAN使用手册
    [35] MARC软件专题资料,大变形和屈曲/失稳分析
    [36] 中华人民共和国国家标准,核电厂抗震设计规范,GB50267-97
    [37] 中华人民共和国国家标准,钢制压力容器,GB150-1998
    [38] ASME-Ⅲ核动力装置设备,第一册,附录
    [1]. Bendsoe M P. Optimization of Structural Topology, Shape and Material. Berlin: Springer. 1997.
    [2]. O. Sigmund. A 99 line topology optimization code written in Matlab. Struct Multidisc Optim. Springer-Verlag2001, 21: 120-127.
    [3]. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures. 1993, 49: 885-896.
    [4]. Bensdoe M P, Kikuchi N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering. 1988, 71: 197-224.
    [5].隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法.计算力学学报.2000,17(1):28-33.
    [6].罗震,陈立平,张云清等.多工况下连续体结构的多刚度拓扑优化设计和二重敏度过滤技术,固体力学学报.2005,26(1):29-36.
    [7].荣见华,唐国金,杨振兴等.一种三维结构拓扑优化设计方法.固体力学学报.2005,26(3):289=296.
    [8].左孔天,陈立平,钟毅芳等.基于人工材料密度的新型拓扑优化理论和算法研究,机械工程学报.2004,40(12):31-37.
    [9]. Zhang W H, Sun S P. Scale-Related Topology Optimization from Unit Cell Homogenization to Super element Model, Proc. 6th World Congress on Structural and Multidisciplinary Optimization (WCSM06), Rio de Janeiro, Brazil, 2005.
    [10]. Rozvany G. Aims, scope, method, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural Optimization. 2001, 21(2): 90-108.
    [11]. Eschenauer H A, Olhoff N. Topology optimization of continuum structures: a review. Applied mechanics Reviews. 2001, 54(4), 331-389.
    [12]. Svanberg K. The method moving asymptotes-A new method for structural optimization. International Journal for numerical Method in Engineering. 1987, 24: 359-373.
    [13]. Sigmund O, Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization. 1998, 16: 68-75.
    [14]. Fernandes P, Guedes J M, Rodrigues H. Topology optimization of three-dimensional linear elastic structures with a constraint on "perimeter" Computers and Structures. 1999, 73: 583-594.
    [15]. Kang Zhan, Zhang Chi, Cheng Gengdong. Structural topology optimization considering mass moment of inertia, Proc. 6th World Congress on Structural and Multidisciplinary Optimization (WCSM06), Rio de Janeiro, Brazil, 2005.
    [16]. Bendsoe M P, Kikuchi N, Generating N. Optimal Topologies in Structural Design Using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering. 1988, 71(1): 197-224.
    [17].李泉永.机械结构优化设计的回顾与展望.桂林电子工业学院学报.2000 20(4):114-119.
    [18]. Dorn W, Gomory R, Greenberg H. Automatic design of optimal structures. Design Mechanique. 1964,3(1):25-52.
    [19].程耿东.关于桁架结构拓扑优化中的奇异最优解.大连理工大学学报.2000,40(4):379-383.
    [20].程耿东,郭旭.考虑局部稳定性约束的桁架拓扑优化设计.大连理工大学学报.1995,35(6):770-775.
    [21]. Giuseppe C A. DeRose J. Solving topology optimization problems using wavelet-Galerkin techniques: (Ph. D. Thesis), Department of Mechanical Engineering, Michigan State University, 1998.
    [22]. Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plate. Int. J. Solids. Struct. 1981, 17: 305-323.
    [23].汪树玉,刘国华,包志仁.结构优化设计的现状与进展(续).基建优化.1999,20(5):3-7.
    [24]. Bensoussan A, Lions J-L, Papanicolau G. Asymptotic analysis for periodic structures. North Holland, 1978.
    [25]. Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering. 1991, 93: 291-318.
    [26]. Yang R J, Chuang C H. Optimal topology design using linear programming. Comput & Struct. 1994, 52: 265-275.
    [27]. http://www. topopt, dtu. dk/
    [28].夸克工作室.有限元分析基础篇ANSYS与Matlab.北京:清华大学出版社,2002.
    [29].周军.航天器控制原理.西安:西北工业大学出版社:2001.
    [30]. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Comput & Struct. 1993, 49(5): 885-896.
    [1] 中国科学院兰州冻土研究所.第二届全国冻土学术会议文集.兰州:甘肃人民出版社,1993.
    [2] 崔托维奇.张长庆,朱元林译.冻土力学.北京:科学出版社,1983.
    [3] 程国栋.冻土力学与工程的国际研究新进展.地球科学进展,2001,16(3):293-299.
    [4] 苗天德,郭力等.正冻土中水热迁移问题的混合物理论模型.中国科学(D辑),1999,29卷,增刊1:8-14.
    [5] 何平,程国栋,朱元林.冻土粘弹塑损伤耦合本构理论。中国科学(D辑),1999,29卷,增刊1:34-39.
    [6] 令锋,吴紫汪,朱元林等.冻土应力—应变曲线的分形逼近.中国科学(D辑),1999,29卷,增刊1:15-20.
    [7] 李洪升,刘增利,朱元林等.冻土断裂韧度的测试理论与方法.岩土工程学报,2000,22(1):61-65.
    [8] 李洪升,刘增利,朱元林。冻土断裂韧度的测试方法及断裂力学行为.第五届全国冰川冻土学大会论文集(上).兰州:甘肃文化出版社,1996,736-740.
    [9] 李洪升,杨海天,刘增利.冻土与界面断裂韧度K_ⅡC的试验研究.大连理工大学学报,1997,37(1):20-23.
    [10] 李洪升,张小鹏,朱元林.冻土断裂韧度的测试研究.冰川冻土,1995,17(4):112-115.
    [11] 崔文心,杨维好,吕恒林.深厚层土层中的冻结壁和井壁.北京:中国矿业大学出版社,1998.
    [12] 李洪升,刘增利,张小鹏.冻土破坏过程的微裂纹损伤区的计算分析.计算力学学报,2004,21(6):696-700.
    [13] 李洪升,王悦东,刘增利.冻土中微裂纹尺寸的识别与确认.岩土力学,2004,25(4):534-537.
    [14] 刘增利,张小鹏,李洪升.基于动态CT识别的冻土单轴压缩损伤本构模型.岩土力学,2005,26(4):542-546.
    [15] 刘增利,李洪升,朱元林等.冻土初始与附加细观损伤的cT识别模型。冰川冻土,2002,24(5):676-680.
    [16] 梁承姬,李洪升,刘增利等.激光散斑法对冻土微裂纹形貌和发展过程的研究.大连理工大学学报,1998,38(2):152-156.
    [17] 李洪升,朱元林.冻土断裂力学及其应用.北京:海洋出版社,2002.
    [18] 吴紫汪,马巍.冻土强度与蠕变.兰州:兰州出版社,1994.
    [19] 中华人民共和国行业标准.冻土地区建筑地基基础设计规范(JGJ118-1998).北京:中国建筑工业出版社,1998.
    [20] 中华人民共和国电力行业标准.水工建筑物抗冰冻设计规范(DL/T5082-1998).北京:中国电力出版社,1998.
    [21] 陈兴周,常亮,刘杰,周济芳.关于常用断裂判据.西北水力发电,2005,212):27-27.
    [22] 李灏.断裂力学.济南:山东科学技术出版社,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700