元素添加对铁基非晶非晶形成能力、晶化及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择铁基非晶为研究对象,分别研究了Ni、Zr、Y等不同类别元素的添加对铁基非晶非晶形成能力、热膨胀行为、力学性能、磁学性能、耐腐蚀性能等的影响。此外,还研究了Ni和Y元素的添加对铁基非晶等温退火及快淬过程中初晶析出相的结构、晶化析出机理、软磁性能等的影响。
     利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、振动样品磁强计(VSM)和电化学工作站分析了铁磁性元素Ni添加对Fe78Si9B13非晶合金非晶形成能力、磁学性能和耐腐蚀性能的影响。研究表明,Ni的添加降低了Fe78Si9B13非晶合金的非晶形成能力和软磁性能。分析认为,Ni的添加(1)使Fe-Si-B-Ni合金由共晶点向过共晶点偏离;(2)使Fe-Si区中的Si原子偏离Fe-Si区,从而促进了初晶α-Fe相的形成,降低了合金的非晶形成能力。Ni的添加提高了(Fe0.78Si0.09B0.13)100-xNix (x=0,2,3和5)非晶合金在酸性、盐及碱性溶液中的耐腐蚀性能。合金钝化保护能力的提高是由于Ni的添加促进了Si原子向合金表面的扩散,在合金表面形成了稳定且连续的Si氧化物保护膜的缘故。
     利用XRD、透射电子显微镜(TEM)、显微硬度仪分析测试了Ni的添加对(Fe0.78Si0.09B0.i3)100-xNix(x=0,2和5)非晶合金等温退火过程中的初晶析出相的结构和析出机理的影响,以及(Fe0.78Si0.09B0.13)95Nis合金不同快淬条件下力学性能的变化。结果显示,Fe-Si-B-Ni合金在快淬和等温退火晶化过程中的初晶析出相都是α-Fe(Si)固溶体;在等温退火过程中,Ni的添加促进了初晶a-Fe的形核,抑制了残余非晶基体的进一步分解。在(Fe0.78Si0.09B0.13)100-xNix(x=0,2和5)非晶合金的晶化过程中,初晶相α-Fe的晶格常数和晶粒尺寸随退火时间的延长出现背离现象。这与α-Fe生长过程中结晶前沿Si的浓度随α-Fe晶粒的长大而升高有关。经快淬(Fe0.78Si0.09B0.13)95Ni5合金所获得的非晶和部分非晶条带以及相应的条带的辊面和自由面的显微硬度值存在差异。条带辊面的显微硬度值要高于自由表面的硬度值;部分非晶条带的辊面和自由表面的显微硬度值都要高于相应的非晶条带的硬度值。使用的制备设备以及不同的快淬条件所引起的析出相强化和晶界强化是造成这种差异的原因。
     利用XRD、DSC、热膨胀仪(DIL)、VSM分析测试了前过渡族大原子元素Zr的添加对(Fe0.78Si0.09B0.13)100-xrZrx(x=0,1,2)合金非晶形成能力、热膨胀性能和磁学性能的影响。结果表明适量Zr的添加(1 at.%)可提高合金的非晶形成能力,但进一步增加Zr的含量则恶化了合金的非晶形成能力。这是由于适量Zr的添加使Zr与B原子在非晶合金中形成了骨架增强型结构,稳定了合金的过冷熔体,抑制了初晶相的析出,提高了合金的非晶形成能力。另外,Fe-Si-B-Zr非晶合金热膨胀系数曲线与其DSC曲线具有对应关系,说明该合金的收缩阶段主要是由合金的晶化所引起的。热磁曲线M-T上的居里转变温度Tc与DSC曲线和DIL曲线上的居里转变温度符合的很好,表明铁基非晶的居里转变可由此三种测试方式来表征。
     利用XRD、DSC、TEM测试分析了稀土元素Y的添加对工业级原材料Fe79.77M0.23B20(M为杂质元素)合金非晶形成能力的影响。研究表明,添加Y能提高合金的非晶形成能力。Y的添加可以净化合金熔体,改善合金中原子之间的错配度,增强合金过冷熔体的稳定性,抑制晶体相的析出,进而提高了合金的非晶形成能力。利用XRD、TEM、VSM分析测试了Fe71.51M0.49Y6B22 (M为杂质元素)非晶合金等温退火过程中磁学性能的变化。结果显示,饱和磁化强度Ms和矫顽力Hc随退火时间的延长呈背离趋势。这是由于在等温退火过程中,大原子Y和小原子B会被初晶α-Fe排斥出去,在α-Fe周围的残余非晶基体上分别形成不同的浓度梯度,引起初晶α-Fe晶粒的细化,导致饱和磁化强度Ms和矫顽力Hc出现背离现象。
     利用扫描电子显微镜(SEM)和电化学工作站对Fe75.77M0.23Y4B20和Fe71.51M0.49Y6B22(M为杂质元素)非晶合金的耐腐蚀性能进行了分析测试。结果显示,在酸性、盐溶液中,Fe75.77M0.23Y4B20非晶合金的耐腐蚀性能要好于Fe71.51M0.49Y6B22合金。分析认为,大原子元素Y的添加会使(FeM)-Y-B (M为杂质元素)非晶合金最近邻原子距离发生改变,导致合金内部应力及自由能态发生变化,进而使合金表面原子的电化学活化能及表面活性原子数量发生改变,影响了铁基非晶合金的耐腐蚀性能。
In the present thesis, the effect of Ni, Zr and Y on the glass forming ability (GFA), thermal expansion behavior, mechanical properties, magnetic properties and corrosion resistance of the Fe-based glassy alloys have been investigated. In addition, the influence of Ni and Y on the primary crystalline phases, precipitation mechanism, and soft magnetic properties in isothermal annealing and rapid solidification process of Fe-based glass alloys have been discussed as well.
     The influence of Ni on the GFA, magnetic properties and corrosion resistace of Fe78Si9Bi3 glassy alloys were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), electrochemical workstation and scanning electron microscopy (SEM). The results show that the addtion of Ni decreases the GFA and soft magnetic properties of Fe78Si9B13 glassy alloys. The additon of Ni can induce:(1) the deviation of Fe-Si-B-Ni from eutectic point into the hypereutetic regime; (2) the deviation of Si atoms from Fe-Si region which promotes the nucleation of primaryα-Fe phase. The addition of Ni enhances the corrosion resistance of (Fe0.78Si0.09B0.13)100-x.Nix(x= 0,2,3,5) glassy alloys. The improvements of the passive protective properties attribute to the addition of Ni which can promote the diffusive of the Si atoms to the surface of the alloys, and subseqently the Si atoms form a stable and continouos protective SiO2 film.
     The influence of Ni on the structure and primary crystalline precipitation mechanism of (Fe0.78Si0.09B0.i3)100-x-Nix (x= 0,2,5) glassy alloys, and the mechanical properties of the (Fe0.78Si0.09B0.13)95Ni5 alloy after rapid solidification have been investigated by XRD, transimission electron microscopy (TEM) and microhardness tester. The resuls show that the primary crystalline phases of Fe-Si-B-Ni glassy alloys are a-Fe(Si) solid solution in the rapid solidfication and isothermal annealing process. In the isothermal annealing process, the addition of Ni promotes the nucleation of primary crystalline a-Fe phase, inhabites the decompositon of residual glassy matrix. As the annealing time increases, the lattice constant and grain size of the primary phase show an opposite trend in the crystallization process. The results are related to that the concentration of Si atoms increases in the crystallization interface as the primary a-Fe phase grows up. The microhardness values (H、) between the wheel side and the free side are different, both in glassy and partial crystalline ribbons of the as-cast (Fe0.78Si0.09B0.13)95Ni5 alloy ribbons. The H、of the wheel side is larger than that of the free side, and the glassy ribbon is smaller than that of the partial crystalline ribbon both in the wheel side and the free side. It is ascribed to precipitation and grain boundary strengthening which caused by the fabricating equipment and the different spinning conditions.
     The effect of Zr on the GFA, thermal expansion properties and magnetic properties of (Fe0.78Si0.09B0.13)100-xZrx(x=0,1,2) alloys were investigated by XRD, DSC, dilatometer (DIL) and VSM. The results show that appropriate Zr addition (1 at. %) can improve the GFA and thermal stability of the Fe-Si-B-Zr alloys. However, further increase of Zr addition deteriorates the GFA. Appropriate addition of Zr can form a reinfoced backbone structure with B atoms, and this kind of structure enhances the stability of the undercooled melt, suppresses primary crystallization, all these induce the improvement of GFA. The thermal expansion coefficient curves and the DSC curves have a similar trend, suggesting that the contraction process on the DIL curve is mainly ascribed to the crystallization process of the Fe-based glassy alloys. The Curie transition temperature T。on the temperature-magnetization(M-T) curves is agree well with the Curie transition temperature on the DSC and DIL curves, implying that the Curie transition temperature can be characterized by M-T, DSC and DIL method.
     The effect of Y on the GFA of the commercial Fe79.77M0.23B20 (M= impurity elements) alloy were investigated by XRD, DSC, TEM. The results show that Y can improve the GFA. It is attributable to that Y has a scavenging effect on the alloy melt, which can improve the stability of undercooled melt and suppress the cyatallization. The variety of the soft magnetic properties of the Fe71.51M0.49Y6B22 (M= impurity elements) in the isothermal annealing process was investigated. With the annealing time extending, the saturation magnetization Ms presents an opposite to the trend coercivity Hc. In the isothermal annealing process, the large atom Y and the small atom B will be rejected by primary crystalline a-Fe phase, and form a different concentrantion gradient around the a-Fe in the residual amorphous matrix. It promotes to the refine of a-Fe grain as well as result in the opposite trend between Ms and Hc.
     The corrosion resistance of the Fe75.77M0.23Y4B20 and Fe71.51M0.49Y6B22(M impurity elements) glass alloys were investigated by electrochemical workstation and SEM. The results show that the corrosion resistance properties of Fe75.77M0.23Y4B20 glass alloy is better than that of Fe71.51M0.49Y6B22. The addition of large atom Y can change the nearest neighbor distance of the (FeM)-Y-B (M= impurity elements) alloys, and result in the change of the free energy level and the internal stress of the alloy. Furthermore, it changes the electrochemical activation energy of the alloys and the amount of activated atoms on the surface. All these result in the variation of corrosion resistance of the glassy alloys.
引文
[1]P. Duwez. R.H. Willens. W. Klement. Continous series of metastable solid solutions in silver-copper alloys. J. Appl. Phys..31(1136)1960
    [2]S. Mader. A.S. Nowick. Metastable Co-Au alloys:example of an amorphous ferromagnet. Appl. Phys. Lett.7(1965)57-59
    [3]P. Duwez. Topics in Applied Physics, Springer. Volume 46.1981
    [4]P. Duwez, S.C.H. Lin, Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys. J. Appl. Phys..38(1967)4096-4097
    [5]戴道生,韩汝琪,非晶态物理,北京,电子工业出版社,1984,p518
    [6]H.S. Chen, C.E. Miller, A rapid quenching technique for the preparation of thin uniform films of amorphous solids, Rev. Sci. Instrum.,41(1970)1237
    [7]C.H. Smith, Magnetic shielding to multi-gigawatt magnetic switches ten years of amorphous magnetic applications, IEEE Trans. Magn.,18(1982)1376-1381
    [8]H.H. Liebermann, CD. Graham, Production of alloy ribbons and effects of apparatus on ribbon dimensions, IEEE Trans. Magn.,12(1976)921-923
    [9]王新林,非晶和纳米晶软磁合金从研究到产业化,金属功能材料,3-6(1996)
    [10]李志华,用于配电变压器铁芯的具有高工作磁感的非晶合金,金属功能材料,5(2001)34-38
    [11]周少雄,陈文智,非晶态合金的发展现状及在配电变压器中的应用,新材料产业,3(2010)3943
    [12]F.E.卢博斯基,非晶态金属合金,北京,冶金工业出版社,1989,p510
    [13]A. Inoue, Y. Shinohara, J.S. Gook, Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting, Mater. Trans. JIM,36(1995)1427-1433
    [14]A. Inoue. Stablization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000)279-306
    [15]A. Inoue, T. Zhang, A. Takeuchi. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system, Appl. Phys. Lett.,71(1997)464-466
    [16]A. Inoue, B.L. Shen, Soft magnetic bulk glassy Fe-B-Si-Nb alloys with high saturation magnetization above 1.5T, Mater. Trans. JIM,43(2002)766-799
    [17]B.L. Shen. A. Inoue, C.T. Chang. Superhigh strength and good soft-magnetic properties of (Fe,Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability, Appl. Phys. Lett., 85(2004)4911-4913
    [18]A. Inoue, B.L. Shen. A new Fe-based bulk glassy alloy with outstanding mechanical properties. Advanced Mater.,16(2005)2189
    [19]T.D. Shen, R.B. Schwarz, Bulk ferromagnetic glasses prepared by flux melting and water quenching, Appl. Phys. Lett.,75(1999)49-51
    [20]T.D. Shen, R.B. Schwarz, Bulk ferromagnetic glasses in the Fe-Ni-P-B system, Acta Mater., 49(2001)837
    [21]C.Y. Lin, H.Y. Tien, T.S. Chin, Soft magnetic ternary iron-born-based bulk metallic glasses, Appl. Phys. Lett.,86(2005)162501
    [22]S.J. Poon, G.J. Shiflet, F.Q. Guo, V. Ponnambalam, Glass fomability of ferrous-and aluminum-based structural metallic alloys, J. Non-Crystal. Solids,317(2003)1-9
    [23]A. Inoue, X.M. Wang, Bulk amorphous FC20(Fe-C-Si) alloys with small amounts of B and their crystallized structure and mechanical properties, Acta Mater.,48(2000)1383-1395
    [24]Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett.,83(2003)2581
    [25]B.L. Shen, A. Inoue, C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe,Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability, Appl. Phys. Lett., 85(2004)4911
    [26]A. Makino, T. Kubota, C. Chang, M. Makabe, A. Inoue, FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness, J. Magn. Magn. Mater., 320(2008)2499-2503
    [27]A. Makina, C. Chang, T. Kubota, A. Inoue, Soft magnetic FeSiBPC bulk metallic glasses without any glass-forming metal elements, J. Alloys Compd.,483(2009)616-619
    [28]V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett.,83(2003)1131-1133
    [29]S.J. Poon, G.J. Shiflet, V. Ponnambalam, Synthesis and properties of high-maganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys, Mater. Res. SocProc.,754(2003) CC 1.2.1
    [30]Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Structural amorphous steels, Phys. Rev. Lett.,92(2004)245503
    [31]V. Ponnambalam, S.J. Poon, G.J. Shiflet, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter, J. Mater, Res.,19(2004)1320-1323
    [32]V. Ponnambalam, S.J. Poon, G.J. Shiflet, Fe-Mn-Cr-Mo-(Y,Ln)-C-B(Ln=Lanthanides) bulk metallic glasses as formable amorphous steel alloys, J. Mater. Res.,19(2004)3046
    [33]J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett.,86(2005)151907
    [34]W.H. Wang, C. Dong, C.H. Shenk, Bulk metallic glasses, Mater. Sci. Eng. R,44(2002)45-89
    [35]杨膺善,王一禾,非晶态合金,北京,冶金工业出版社,p43
    [36]J.M. Dubois, G. Le Caer, Mossbauer study of Fe1-xBx amorphous alloys:a model of the atomic structure, Nucl. Instr. Meth.,199(1982)307
    [37]J.M. Dubois, G. Le Caer. Order local et properties physiques des verres metalliques riches en fer, ActaMetall.,32(1984)2101
    [38]I. Matko. E. Illekova. P. Svec. P. Duhaj, K. Czomorova. Local ordering model in Fe-Si-B amorphous alloys. Mater. Sci. Eng. A.226-228(1997)280-284
    [39]T. Naohara, Effects of low-temperature aging on the microstructure and soft magnetic properties of rapidly quenched Fe-Si-B alloys, Metall. Mater. Trans. A.27A(1996)2454
    [40]W.M. Wang, A. Gebert, S. Roth. U. Kuehn, L. Schultz. Effect of Si on the glass-forming ability, thermal ability and magnetic properties of FeCoZrMoWB alloys, J. Alloys Compd., 459(2008)203-208
    [41]W.M. Wang, W.X. Zhang, A. Gebert, S. Roth. C. Mickel, L. Schultz, Micostucture and magnetic properties in Fe61Co9-xZr8Mo5WxB17 glasses and glass-matrix composites, Metall. Mater. Trans.40A(2009)511-521
    [42]S.J. Poon, G.J. Shiflet, F.Q. Guo, V. Ponnambalam, Glass formability of ferrous-and aluminum-based structural metallic alloys, J. Non-Crystal. Solids,317(2003)1-9
    [43]A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and anocrystalline alloys, Mater. Sci. Eng. A,375-377(2004)16-30
    [44]T. Nakamura, E. Matsubara, M. Imafuku, H. Koshita, A. Inoue, Y. Waseda, Structural study of amorphous Fe70M10B20(M= Cr, W, Nb, Zr and Hf) alloys by X-ray diffraction. Mater. Trans. JIM.42 (2001) 1530-1534
    [45]M. Imafuku, K. Yaoita, S. Sato, W. Zhang, A. Inoue, Y. Waseda, Local atomic structure of Fe-Co-Ln-B(Ln= Sm.Tb, or Dy) amorphous alloys with supercooled liquid region, Mater. Sci. Eng. A,304-306(2001)660-664
    [46]M. Imafuku, S. Sato, H. Koshiba, E. Matsubara, A. Inoue, Crystallization behavior of amorphous Fe9O-xNb10Bx (X=10 and 30) alloys, Mater. Trans. JIM,41(2000)1526
    [47]J.Y. Qin, T.K. Gu, L. Yang, X.F. Bian, Study on the structural relationship between the liquid and amorphous Fe78Si9B13 alloys by ab initio molecular dynamics simulation, Appl. Phys. Lett.,90(2007)201909
    [48]W.H. Wang, Role of minor additions in formation and properties of bulk metallic glasses, Prog. Mater Sci..52(2007)540-596
    [49]Z.P. Lu, C.T. Liu, Role of minor alloying additions in formation of bulk metallic glasses:a review, J. Mater. Sci.,39(2004)3965-3974
    [50]A. Inoue, X.M. Wang, Bulk amorphous FC20(Fe-C-Si) alloys with small amount B and their crystallized structure and mechanical properties, Acta Mater.,48(2000)1383-1395
    [51]A. Inoue, A. Marakami, T. Zhang, A. Takeuchi, Thermal stability and magnetic properties of bulk amorphous Fe-Al-Ga-P-C-B-Si alloys, Mater. Trans. JIM,38(1997)189-186
    [52]B. Shen, M. Akiba, A. Inoue, Effect of Si and Mo additions on the glass-forming in FeGaPCB bulk glassy alloys with high saturation magnetization, Phys. Rev. B,73(2006)104204
    [53]W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, H.Y. Bai, Enhanced of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying, J. Phys.:Condens. Mater., 16(2004)3719-3723
    [54]F. Li, B. Shen, A. Makino, A. Inoue. Excellent soft-magnetic properties of (Fe.Co)-Mo-(P,C,B,Si) bulk glassy alloys with ductile deformation behavior, Appl. Phys. Lett., 91(2007)234101
    [55]J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett.,86(2005)151907
    [56]S.J. Poon, G.J. Shiflet, F.Q. Guo, V. Ponnambalam, Glass formability of ferrous-and aluminum-based structural metallic alloys. J. Non-Crystal. Solids,317(2003)1-9
    [57]B. Shen, C. Chang, Z. Zhang, A. Inoue, Enhanced of glass-forming ability of FeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magnetic properties, J. Appl. Phys., 102(2007)023515
    [58]W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci.,52(2007)540-596
    [59]C.Y. Luo, Y.H. Zhao,X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, S.Z. Zhou, Making amorphous steel in air by rare earth micoalloying, J. Non-Crystal. Solids,352(2005)185-188
    [60]C.Y. Lin, H.Y. Tien, T.S. Chin, Soft magnetic ternary iron-born-based bulk metallic glasses, Appl. Phys. Lett.,86(2005)162501
    [61]Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett.,83(2003)2581
    [62]S.J. Poon, G.J. Shiflet, V. Ponnambalam. Synthesis and properties of high-maganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys, Mater. Res. Soc. Proc,754(2003) CC 1.2.1
    [63]V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett.,83(2003)1131-1133
    [64]戴道生,韩汝琪,非晶态物理,北京,电子工业出版社,1984,p638
    [65]F.F. Marzo, A.R. Pierna, M.M. Vega, Effect of irreversible structural relaxation on the electrochemical behavior of Fe78-xSi13B9Cr(x=34.7) amorphous alloys, J. Non-Crystal. Solids, 329(2003)108-114
    [66]Inoue A., Ohtera K., Zhang T., Masumoto T., New amorphous Al-Ln(Ln=Pr, Nd, Sm, or Gd) alloys prepared by melt spinning, Jpn. J. Appl. Phys.,1988,27(9):1583-1586
    [67]卢柯,非晶态合金的晶化及微观机制,中国科学院博士学位论文,沈阳,1989,p10
    [68]Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys.,64(1988)6044
    [69]Y Yoshizawa, K. Yamauchi, T. Yamane, H. Sugihara, Common mode choke cores using the new Fe-based alloys composed of ultrafine structre, J. Appl. Phys.,64(1988)6047
    [70]K. Suzuki. N. Kataoka. A. Inoue. A. Makino. T. Masumoto. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure. Mater. Trans. JIM.31(1990)743-746
    [71]A. Makino. A. Inoue. T. Masumoto. Nanocrystalline soft magnetic Fe-M-B(M=Zr.Hf.Nb).Fe-M-O(M=Zr. Hf, Rear Earth) alloys and their applications. NanoStruct. Mater..12(1999)825
    [72]M.A. Willard. D.E. Laughlin. M.E. McHenry. D. Thoma. K. Sickafus. J.O. Cross. V.G. Harris. Structure and magnetic properties of (Fe0.5Co0.5)Zr7B4Cu1 nanocrystalline alloys, J. Appl. Phys..84(1998)6773
    [73]M.A. Willard, M.Q. Huang, D.E. Laughlin, M.E. McHenry, J.O. Cross, V.G. Harris, C. Franchetti, Magnetic properties of HITPERM (Fe,Co)Zr7B4Cu1 magnets, J. Appl. Phys.. 85(1999)4421
    [74]A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness. J. Appl. Phys., 105(2009)07A308
    [75]K. Hono, Y. Zhang, A. Inoue, T. Sakurai, Atom probe studies of nanocrystalline microstructural evolution in some amorphous alloys, Mater. Trans. JIM,36(1995)909
    [76]K. Hono, Atom probe microanalysis and nanoscale microstructures in the metallic materials, Acta Mater.47(1999)3127-3145
    [77]J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, HJ. Jones, A model for nucleation of nano crystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9, NanoStruct. Mater.,9(1997)391-396
    [78]J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, H.J. Jones, On the formation of nanocrystals in the soft magnetic Fe73.5Nb3Cu1Si13.5B9, Acta Mater,46(1998)1861-1874
    [79]J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, On the role of Cu and Nb in the formation of nanocrystala in the amorphous Fe73.5Nb3Cu1Si135B, Appl. Phys. Lett.,64(1994)974
    [80]A.R. Yavari, O. Drbohlav, Thermodymics and kinetics of nanostructure formation in soft-magnetic nanocrystalline alloys, Mater. Trans. JIM,36(1995)896-902
    [81]T.S. Chin, C.Y. Lin, M.C. Lee, R.T. Huang, S.M. Huang, Bulk nano-crystalline Fe-based alloys by annealing bulk glassy precursors, Intermetallics,16(2008)52-57
    [82]D. Szewieczek, J. Tyrlik-Held, Z. Paszenda, Corrosion investigation of nanocrysalline iron based alloy, J. Mater. Proc. Tech.,78(1998)171-176
    [83]K. Peng, Y.H. Tang, L.P. Zhou, J.C. Tang, F.Xu, Y.W. Du, Influence of corrosion on the magnetic properties of amorphous and nanocrystalline FeZrNbBCu alloy, Physcia B, 366(2005)110-115
    [84]N.A. Mariano, C.A.C. Souza, J.E. May, S.E. Kuri, Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloys, Mater. Sci. Eng. A, 354(2003)1
    [85]C.A.C. Souza, J.E. May, I.A. Carlos, M.F. Oliveria, S.E. Kuri, C.S. Kiminami, Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12 alloys, J. Non-Cryst. Solids.304(2002)210-216
    [86]SJ. Pang, T. Zhang. K. Asami. A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance, Acta Mater.50(2002)489-497
    [87]Z.L. Long. C.T. Chang, Y.H. Ding, Y. Shao, P. Zhang, B.L. Shen, A. Inoue. Corrosion behavior of Fe-based ferromagnetic(Fe,Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes, J. Non-Cryst. Solids,354(2008)4609-4613
    [88]L. Long, Y. Shao, X.H. Deng, Z.C. Zhang, Y. Jiang. P. Zhang. B.L. Shen, A. Inoue, Cr effect on magnetic and corrosion properties of Fe-Co-Si-B-Nb-Cr bulk glassy alloys with high glass-forming ability, Intermetallics,15(2007)1453-1458
    [89]L. Long, Y. Shao, G.Q. Xie, P. Zhang, B.L. Shen, A. Inoue, Enhanced soft-magnetic and corrosion properties of Fe-based bulk glassy alloys with improved plasticity through the addition of Cr, J. Alloys Compd.,462(2008)52-59
    [90]M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, The effect of air exposure on the corrosion behavior of amorphous Fe-8Cr-Mo-13P-7C alloys in 1M HC1, Corros. Sci. 37(1995)1289-1301
    [91]M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, The influence of Mo Addition and air exposure on the corrosion behavior of amorphous Fe-8Cr-13P-7C alloy in de-aerated 1M HC1, Corros. Sci.,38(1996)349-365
    [92]M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima. K. Asami. K. Hashimoto, The role of chromium and molybdenum in passivation of amorphous Fe-Cr-Mo-P-C alloys in de-aerated 1M HC1. Corros. Sci.,38(1996)2137-2151
    [93]S.J. Poon, GJ. Shiflet, V. Ponnambalam, Synthesis and properties of high-maganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys, Mater. Res., Soc.Proc.754(2003) CC 1.2.1
    [94]S.J. Pang, T. Zhang, K. Asami, A. Inoue, Bulk glassy Fe-Cr-Mo-C-B alloy with high corrosion resistance, Corros. Sci.,44(2002)1847-1856
    [95]R. Raicheff, V. Zaprianova, E. Gattef, Effcet of structural relaxation on electrochemical corrosion behavior of amorphous alloys, J. Mater. Sci. Lett.,16(1997)1701-1704
    [96]C.A.C. Souza, F.S. Politi, C.S. Kiminami, Influence of structural relaxation and partial devitrifacation on the corrosion resistance of Fe7sSi9B,3 amorphous alloy, Scripta Mater., 39(1998)329-334
    [97]M.G. Alvarez, S.M. Vazquez, J. Moya, H. Sirkin. Anodic behavior of FeSiAlBNbCu amorphous,nanostructured and crystalline alloys, Scripta Mater.,44(2001)507-512
    [98]M.H. Cohen, D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys., 31(1959)1164-1169
    [99]D. Turnbull, M.H. Cohen, On the free-volume model of the liquid-glass transition, J. Chem. Phys.,52(1970)3038-3041
    [100]J. Jayaraj. A. Gebert. L. Schultz. Passivation behavior of structurally relaxed ZrCuAgAl metallic glass, J. Alloys Compd..479(2009)257-261
    [101]W.H. Jiang. F. Jiang, B.A. Green. F.X. Liu. P.K. Liaw. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass, Appl. Phys. Lett.,91(2007)041904
    [102]C.A.C. Souza, S.E. Kuri. F.S. Politti, J.E. May, C.S. Kiminami. Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution, J. Non-Crystal. Solids.247(1999)69-73
    [103]H.Y. Tong, F.G. Shi, E.J. Lavernia. Enhanced oxidation resistance of nanocrystalline FeBSi materials, Scripta Mater.,32(1995)511-516
    [104]A. Inoue, B.L. Shen, A.R. Yavari, Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si system, J. Mater. Res.,18(2003)1487-1492
    [105]A. Makino, T. Kubota, M. Makabe, C.T. Chang, A. Inoue, Fe-metalloid metallic glasses with high magnetic flux density and high glass-forming ability, Mater. Sci. Forum., 561-565(2007)1361-1366
    [106]A.R. Yavari, Formation of boron-rich zones and embrittlement of Fe-B-type metallic glasses, J. Mater. Res.,1(1986)746
    [1]神户博太郎编,刘振海译,热分析,北京:化学出版社,1985
    [2]王一禾,杨赝善编,非晶态合金,北京:冶金工业出版社,1989
    [3]于伯龄,姜胶东,实用热分析,北京:纺织工业出版社,1990
    [1]Z.L. Long. C.T. Chang, Y.H. Ding, Y. Shao, P. Zhang, B.L. Shen. A. Inoue. Corrosion behavior of Fe-based ferromagnetic(Fe,Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes. J. Non-Cryst. Solids,354 (2008) 4609-4613
    [2]Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys.,64 (1988) 6044
    [3]K. Suzuki, A. Makino, N. Kataoka, A. Inoue, T. Masumoto, High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure, Mater.Trans. JIM, 32(1991)93
    [4]M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J. O. Cross, V. G. Harris, Structure and magnetic properties of (Fe0.5Co0.5)Zr7B4Cu1 nanocrystalline alloys, J. Appl. Phys.,84(1998)6773
    [5]A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness, J. Appl. Phys.,105(2009)07A308
    [6]K. Hono, Atom probe microanalysis and nanoscale microstructures in the metallic materials, Acta Mater.,47 (1999) 3127-3145
    [7]Y.R. Zhang, R.V. Ramanujan, The effect of niobium alloying additios on the crystallization of Fe-Si-B-Nb alloy, J. Alloys Compd.,403 (2005) 197-205
    [8]Y.R. Zhang, R.V. Ramanujan, Microstructural of crystallzation of amorphous Fe-Si-B based magnetic alloys, Thin Solid Films,505 (2006) 97-102
    [9]X.D. Liu, K. Lu, B.Z. Ding, Z.Q. Hu, J. Zhu, The lattice structure of nanocrystalline Fe-Cu-Si-B alloys, Physica B,193(1994)147-153
    [10]X.D. Liu, K. Lu, Z.Q. Hu, B.Z. Ding, J. Zhu, Transmission mossbauer spectroscopy and X-ray diffraction studies on the structure of nanocrystalline Fe-Cu-Si-B alloys, J. Appl. Phys., 75(1994)3365-3370
    [11]X.D. Liu, K. Lu, B.Z. Ding, Z.Q. Hu, Observation of the crystallization of amorphous Fe-Cu-Si-B alloy in situ transimission electron microscopy, Mater. Sci. Eng. A, 179/180(1994)386-389
    [12]刘学东,卢柯,丁炳哲,胡壮麒,α-Fe(Si)纳米相的晶格畸变,科学通报,39(1994)217
    [13]K. Yamauchi, Y. Yoshizawa, Recent development of nanocrystalline soft magnetic alloys, Nanostruct. Mater.,6(1995)247-254
    [14]J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, H.N. Jones, A model for nucleation of nano crystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9, NanoStruct. Mater.,9(1997)391-396
    [15]K. Kim, T.H. Noh, I.K. Kang, T. Kang, Microstructural change upon annealing Fe-Zr-B alloys with different B contents, Mater. Sci. Eng. A,179-180(1994)552
    [16]A.R. Yavari, O. Drbohlav, Thermodynamics and kinetics of nanostructure formation in soft-magnetic nanocrystalline alloys. Mater. Trans. JIM.36(1995)896-902
    [17]W.H. Wang. M.X. Pan. D.Q. Zhao. Y. Hu. H.Y. Bai. Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying. J. Phys. Condens. Mater.. 16(2004)3719-23
    [18]A. Inoue, B.L. Shen, A new Fe-based bulk glassy alloy with outstanding mechanical properties, Adv. Mater..16 (2004) 2189-2192
    [19]J. Steinberg, S. Tyagia, JAE. Lord. The viscosity of molten Fe40Ni40P14B16 and Pd82Si18, Acta Metall 29 (1981) 1309.
    [20]W.M. Wang. A. Gebert, S. Roth, U. Kuehn, L. Shultz, Glass formability and fragility of Fe61Co9-xZr8Mo5WxB17(x=0 and 2) bulk metallic glassy alloys, Intermetallics.16 (2008) 267-272
    [21]L.C. Zhang, J. Xu, Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)-(HCu, Ni, Co)-Al alloys with equiatomic substitution, J. Non-Cryst. Solids,347 (2004) 166-72
    [22]崔忠圻,金属学与热处理,北京,机械工业出版社,1988,p56
    [23]I. Mat'ko, E. Illekova, P. Duhaj, K. Czomorova, Local ordering model in Fe-Si-B amorphous alloys, Mater. Sci. Eng. A,226-228 (1997) 280-284
    [24]T. Tokunaga, H. Ohtani, M. Hasebe. Thermodynamic evaluation of the phase equilibria and glass-forming ability of Fe-Si-B system, CALPHAD,28 (2004) 354-362
    [25]A.R. Yavari, W.J. Botta Filho, C.A.D. Rodrigues, A.L. Greer, J.L. Uriarte, G. Huenen. G Vaughan, A. Inoue, FeNiB-based metallic glasses with fcc crystallisation products, J. Non-Cryst. Solids,304(2002)44-50
    [26]周玉,武高辉,材料分析测试技术,哈尔滨,哈尔滨工业大学出版社,p25
    [27]H.D. Wei, Q.H. Bao, C.X. Wang, W.S. Zhang, Z.Z. Yuan, X.D. Chen, Crystallization kinetics of (Ni0.75Fe0.25)78Si10B12 amorphous alloy, J. Non-Cryst. Solids,354(2008)1876-1882
    [28]V.H. Duong, Q. Grossinger, R.S. Turtelli, C. Polak, The magnetic behavior of nanocrystalline Fe76.5-xCu1,NbxSi13.5B9, J. Magn. Magn. Mater.,157-158(1996)193-194
    [29]X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, H.Z. Fu, Microstructure development of different orientated nickel-based single crystal superalloy in directional solidification, Mater. Charact., 61(2001)7-12
    [30]J. Liu, H.X. Zhang, J.G.Li, Effect of solidification rate on microstructure and crystal orientation of ferromagnetic shape memory alloys Co-Ni-Al, Mater. Sci. Eng. A, 438-440(2006)1061-1064
    [31]I. Mat'ko, E. Illekova, P. Duhaj, K. Czomorova, Local ordering model in Fe-Si-B amorphous alloys, Mater. Sci. Eng. A,1997;226-228:280-284
    [32]J.M. Dubois, G. Le Caer, Order local et properties physiques des verres metalliques riches en fer, Acta Metall,32(1984)2101-2114
    [33]T. Nakamura, E. Matsubara, M. Imafuku, H. Koshiba, A. Inoue, Y. Waseda. Structural study of amorphous FE70M10B20 (M= CR,W,NB,ZR and HF) alloys by X-ray diffraction. Mater. Trans. JIM,2001;42:1530-1534
    [34]T. Naohara, The role of Nb in the nanocrystallization of amorphous Fe-Si-B-Nb alloys. Acta Mater.,1998;46:397-404
    [35]A. Inoue, B.L. Shen, New Fe-based bulk glassy alloy with outstanding mehcanical properties. Adv Mater.,2004; 16:2189-2192
    [36]R. Li, S.J. Pang, C.L. Ma, T. Zhang. Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Mater.,2007;55:3719
    [37]T.S. Chin, C.Y. Lin, M.C. Lee, R.T. Huang, S.M. Huang, Bulk nano-crystalline Fe-based alloys by annealing bulk glassy precursors. Intermetallics,2008; 16:52-57
    [38]K. Lu, Interfacial structural characteristics and grain-size limits in nanocrystalline materials crystallized from amorphous solids. Phys. Rev. B,1995;51:18-27
    [39]K.L. Sahoo, M. Wollgarten, J. Hang, J. Banhart, Effect of La on the crystallization behavior of amorphous Al94-xNi6Lax(x=4-7) alloys. Acta Mater.,2005;53:3861-3870
    [40]L.Q. Xing, J. Eckert, W. Loeser, S. Roth, L. Shultz, Atomic ordering and magnetic properties in Nd57Fe20B8Co5Al10 solids. J. Appl. Phys.,2000;88:3565-369
    [41]W.M. Wang, W.X. Zhang, A. Gebert, S. Roth, C. Mickel, L. Schultz, Mircostructure and magnetic properties in Fe61Co9-xZr8Mo5WxB17 glasses and glass-matrix composites. Metall. Mater. Trans. A,2009;40A:511-521
    [42]W. Kurz, D.J. Fisher, Fundamentals of solidification, Aedermannsdorf, Trans. Tech. Pub. Ltd., 1992, pl21
    [43]H.Q. Hu, Fundamentals of metal solidification, Beijing, Mechnical Industry Press,1991, p70
    [44]A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and it's application to characterization of the main alloying element, Mater. Trans. JIM,46(2005)2817-2829
    [45]W.Z. Chen, P.L. Ryder, X-ray and different scaning calorimertry study of the crystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy, Mater. Sci. Eng. B,34(1995)207-209
    [46]K.Y. He, M.L. Sui, Y. Liu, B.F. Zhao, structural investigation of Fe73.5.sCu1Nb3Si13.5B9 nanocrystalline soft magnetic material, J. Appl. Phys.,75(1994)3684
    [1]A. Makinoa, C.T. Chang. T. Kubota. A. Inoue, Soft magnetic Fe-Si-B-P-C bulk metallic glasses without any glass-forming metal elements. J. Alloys Compd..483 (2009) 616-619
    [2]W. Zhang. A. Inoue, Bulk nanocomposite permanet magnets produced by crystallization of (Fe.Co)-(Nd,Dy)-B bulk glassy alloy, Appl. Phys. Lett.80 (2002) 1610
    [3]A. Inoue. B.L. Shen, Soft magnetic bulk glassy Fe-B-Si-Nb alloys with high saturation magnetization above 1.5T, Mater. Trans. JIM,43(2002)766-799
    [4]B.L. Shen, A. Inoue, C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe,Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability, Appl. Phys. Lett., 85(2004)4911-4913
    [5]V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett., 83(2003)1131-1133
    [6]Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Structural amorphous steels, Phys. Rev. Lett., 92 (2004)245503
    [7]N.O. Gonchukova, A.N. Drugov. Thermal expansion of amorphous alloys, Glass Phys. Chem., 2003,29:184-187.
    [8]D. Schermeyer, H. Neuhauser. Dilatometric measurements on metallic glass ribbons with a wide glass transition range, Mater. Sci. Eng. A.,1997,226-228:846-850.
    [9]K. Ota, W.J. Botta, G. Vaughan, A.R. Yavari. Glass transition TP thermal expansion, and quenched-in free volume AVf in pyrex glass measured by time-resolved X-ray diffraction, J. Alloys Compd.,2005,388:L1-L3.
    [10]G. Wilde, S.G. Klose. W. Soellner, G.P. Gorier, K. Jeropoulos, R. Willnecker, H.J. Fecht, On the stability limits of the undercooled liquid state of Pd-Ni-P, Mater. Sci. Eng. A.,1997, 226-228:434-438.
    [II]C. Nagel, K. Ratzke. E. Schmidtke. F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition, Phys. Rev. B.,1999,60:9212-9215.
    [12]X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Cooling-rate dependence of the density of Pd40Ni10Cu30P20 bulk metallic glass, Phys. Rev. B.,2001,64:172201-1-172201-4.
    [13]A.K. Varshneya. Fundamentals of Inorganic Glasses. Academic Press, San Diego, CA,1994
    [14]C.H. Shek, G.M. Lin, Dilatometric measurements and calculation of effective pair potentials for Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Mater. Lett.,2003.57:1229-1232.
    [15]B.L. Shen, C.T. Chang, Z.T. Zhang, A. Inoue, Enhanced of glass-forming ability of FeCoNiBSiNb bulk glassy alloys with superhigh strength and good soft-magnetic properties. J. Appl. Phys.,102(2007)023515
    [16]A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and it's application to characterization of the main alloying element, Mater. Trans. JIM,46(2005)2817-2829
    [17]T. Itoi, A. Inoue, Thermal stability and soft magnetic properties of Co-Fe-Mn-B (M= Nb, Zr) amorphous alloys with large supercooled liquid region, Mater. Trans. JIM,41 (2000) 1256
    [18]S.J. Poon, G.J. Shifiet, F.Q. Guo, V. Ponnambalam, Glass formability of ferrous-and aluminum-based structural metallic alloys.J. Non-Cryst. Solids,317 (2003) 1-9
    [19]孟庆格,Pr基块体非晶合金的组成、结构和性能与玻璃形成能力的关系,上海交通大学博士学位论文,上海,2006年,p127页。
    [20]http://www.webelements.com
    [21]Y.C. Niu, X.Y. Bian, W.M. Wang, S.F. Jin, G.H. Li, F.M. Chu, W.G Zhang, The peculiarity of contraction in the primary crystallization of Fe73.5Cu1Nb3Si13.5B9 alloy, J. Alloys Compd.,433 (2007)296-301
    [22]卢柯,非晶态合金的晶化及微观机制,中国科学院博士学位论文,沈阳,1989
    [23]H.R. Wang, Y.L. Gao, G.H. Min, X.D. Hui, Y.F. Ye, Primary crystallization in rapidly solidified Zr7oCu20Ni10 alloy from a supercooled liquid region, Phys. Lett. A,314 (2003) 81-87
    [24]Y. He, R.B. Schwarz, D.G Mandrus, Thermal expansion of amorphous Zr41.2 Ti13.8Cu12.5Ni10Be22.5 alloy, J. Mater. Res.11 (1996) 1836
    [25]G.H. Li, W.M. Wang, X.F. Bian, J.T. Zhang, R. Li, L. Wang, Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/(Lao.5Ceo.5)5 amorphous alloys, J. Alloys Compd., 478(2009)745-749
    [26]Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, Newtonian and non-newtonian viscosity of supercooled liquid in metallic glasses, Mater. Sci. Eng. A,304-306 (2001) 674-678
    [27]G. Herzer, Grain structure and magnetism of nanocrystalline ferrromagnets, IEEE Trans. Mag. 25(1989)3327-3329
    [28]A.L. Greer, Effect of quech rate on the structural relaxation of metallic glasses, J. Mater. Sci. 17(1982)1117-1124
    [29]A. Takeuchi, A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, Mater. Trans. JIM,41 (2000) 1372-1378
    [30]F.E. Luborsky, Translated by C. Ke, Y.C. Tang, Y. Luo, K.Y. He, Amorphous Metallic Alloy, Metallurgical industry Press, Beijing,1989, p232
    [31]W.D. Zhong. Ferromagnetism (Ⅱ), Science Press, Beijing.2000. p26-27
    [32]W.M. Wang. W.X. Zhang, A. Gebert, S. Roth. C. Mickel. L. Schultz, Micostucture and magnetic properties in Fe61Co9-xZr8Mo5WxB17 glasses and glass-matrix composites. Metall. Mater. Trans. A,40 (2009) 511
    [33]R.C. O'Handley, Physics of ferromagnetic amorphous alloys, J. Appl. Phys.,62 (1987) R15-49
    [34]J.J. Xu. Analysis of the Metallic Physical Properties. Shanghai Science and Technology Press, Shanghai,1988. p98
    [35]H. Li, Shoulder-peak formation in the process of quenching, Phys. Rev. B,68 (2003) 024210
    [1]W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci.,52(2007)540-596
    [2]Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Structural amorphous steels, Phys. Rev. Lett., 92(2004)245503
    [3]V. Ponnambalam. S.J. Poon, G.J. Shiflet, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter, J. Mater. Res.,19(2004)1320-1323
    [4]V. Ponnambalam, S.J. Poon, G.J. Shiflet, Fe-Mn-Cr-Mo-(Y,Ln)-C-B(Ln=Lanthanides) bulk metallic glasses as formable amorphous steel alloys, J. Mater. Res.,19(2004)3046
    [5]C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in Zr-based bulk metallic glass alloy, Intermetallics,10(2002)1105-1112
    [6]C.Y. Luo, Y.H. Zhao, X.K. Xi, G Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, S.Z. Kou, Making amorphous steel in air by rare earth microalloying, J. Non-Cryst. Solids,352(2006)185-188
    [7]Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett.83(2003)2581
    [8]Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, W.H. Wang, Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition, Mater. Trans. JIM, 41(2000)1410-1414
    [9]D.H. Xu, G. Duan, W.L. Johnson, Unusual glass-froming ability of bulk amorphous alloys based on ordinary metal copper, Phys. Rev. Lett.,92(2004)245504
    [10]C.Y. Lin, H.Y. Tien, T.S. Chin, Soft magnetic ternary iron-boron-based bulk metallic glasses, Appl. Phys. Lett.,86(2005)162501
    [11]C.Y. Lin, T.S.Chin, Soft magnetic (Fe,M)-Y-B (M=Co or Ni) bulk metallic glasses, J. Alloys Compds.,437(2007)191-196
    [12]王光信,刘澄凡,张积树,物理化学,北京,化学工业出版社,p345
    [13]董若璟,冶金原理,北京,机械工业出版社,1980
    [14]S.J. Poon, G.J. Shiflet, F.Q. Guo, V. Ponnambalam, Glass formability of ferrous-and aluminum-based structural metallic alloys, J. Non-Cryst. Solids,317(2003)1-9
    [15]A.R. Yavari, O. Drbohlav, Thermodynamics and kinetics of nanostructure formation in soft-magnetic nanocrystalline alloys, Mater. Trans. JIM,36(1995)896-902
    [16]T.S. Chin, C.Y. Lin, M.C. Lee, R.T. Huang, S.M. Huang, Bulk nano-crystalline Fe-based alloys by annealing bulk glassy precursors, Intermetallics,16(2008)52-57
    [17]M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys, J. Appl. Phys.,1998;84:6773
    [18]K. Yamauchi, Y. Yoshizawa. Recent development of nanocrystalline soft magnetic alloys, Nanostruct. Mater.,1995;6:247-254
    [19]G. Herzer. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, IEEE Trans. Magn..26(1990)1397
    [20]G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets, IEEE Trans. Magn.,25(1989)3327
    [1]K. Peng. Y.H. Tang, L.P. Zhou. J.C. Tang. F.Xu. Y.W. Du, Influence of corrosion on the magnetic properties of amorphous and nanocrystalline FeZrNbBCu alloy, Physcia B, 366(2005)110-115
    [2]N.A. Mariano, C.A.C. Souza, J.E. May, S.E. Kuri, Influence of Nb content on the corrosion resistance and saturation magnetic density of FeCuNbSiB alloys, Mater. Sci. Eng. A, 354(2003)1
    [3]C.A.C. Souza, J.E. May, I.A. Carlos. M.F. Oliveria, S.E. Kuri, C.S. Kiminami, Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12 alloys, J. Non-Cryst. Solids,304(2002)210-216
    [4]D. Szewieczek, A. Baron, Corrosion investigation of nanocrystalline iron based alloy, J. Mater. Process. Technol.,157-158(2004)442-445
    [5]Z.L. Long, C.T. Chang, Y.H. Ding, Y. Shao, P. Zhang. B.L. Shen, A. Inoue, Corrosion behavior of Fe-based ferromagnetic(Fe,Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes, J. Non-Cryst. Solids,354(2008)4609-4613
    [6]V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett., 83(2003)1131-1133
    [7]C.Y. Lin, H.Y. Tien, T.S. Chin, Soft magnetic ternary iron-born-based bulk metallic glasses, Appl. Phys. Lett.,86(2005)162501
    [8]R. Raicheff, V. Zaprianova, E. Gattef, Effcet of structural relaxation on electrochemical corrosion behavior of amorphous alloys, J. Mater. Sci. Lett.,16(1997)1701-1704
    [9]A. Hirata, Y. Hirotsu, K. Amiya, N. Nishiyama, A. Inoue, Nanocrystalline of complex Fe23B6-type structure in glassy Fe-Co-B-Si-Nb alloy. Intermetallics,16(2008)491-497
    [10]F.X. Qin, H.F. Zhang, P. Chen, F.F. Chen, D.C. Qiao, Z.Q. Hu, Corrosion behavior of bulk amorphous Zr55Al10Cu30Ni5-x.Pdx alloys.Mater. Lett.,58 (2004) 1246-1250
    [11]X.D. Bai, Corrosion and Control of Materials, Beijing, Tinghua University Press,2007, p40
    [12]S.J. Pang, C.H. Shek, K. Asami, A. Inoue, T. Zhang, Formation and corrosion behavior of glassy Ni-Nb-Ti-Zr-Co(-Cu) alloys, J. Alloys Compd.,434-435(2007)240-243
    [13]I. Chattoraj, K.R.M. Rao, S. Das, A. Mitra, Anodic reactions of amorphous and devitrified Fe-B-Si-Nb-Cu alloys in buffered chloride and fluoride, Corros. Sci.,41(1999)1-16
    [14]H.Y. Tong, F.G. Shi, E.J. Lavernia, Enhanced oxidation resistance of nanocrystalline FeBSi materials, Scripta Metall. Mater.,32(1995)511-156
    [15]A. Baron, D. Szewieczek, G. Nawrat, Corrosion of amorphous and nanocrystalline Fe-based alloys and its influence on their magnetic behavior, Electrochim. Acta,52(2007)5690-5695
    [16]C.A.C. Souza, S.E. Kuri, F.S. Politti, J.E. May, C.S. Kiminami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution. J. Non-Cryst. Solids.247(1999)69-73
    [17]M.G. Alvarez. S.M. Vazquez, J. Moya. H. Sirkin. Anodic behavior of Fe73.5Si13.5AlxB9Nb3Cu1(x=0-2) amorphous, nanostructured and crystalline alloys. Scripta Mater..44(2001)507-512
    [18]D. Szewieczek. A. Baron, Electrochemical corrosion properties of amorphous Fe7gSi9B1? alloy, J. Mater. Proc. TechnoL 157-158(2004)442-445
    [19]D.A. Porter, K.E. Easterling. Phase Transformation in Metals and Alloys, London, Chapman & Hall.1992. p60
    [20]A.R. Yavari, D. Negri, Effect of concentration gradients on nanostructure development during primary crystallization of soft-magnetic iron-based amorphous alloys and its modelling, NanoStruct. Mater.,8(1997)969-986
    [21]J. Jayaraj, A. Gebert, L. Schultz, Passivation behaviour of structurally relaxed Zr48Cu36Ag8 metallic glass, J. Alloys Compds.,479(2009)257-261
    [22]F.F. Marzo, A.R. Pierna, M.M. Vega, Effect of irreversible structural relaxtion on the electrochemical behavior of Fe78-xSi13B9Cr(x=3,4,7) amorphous alloys, J. Non-Crystal. Solids. 329(2003)108-114
    [23]C.A.C. Souza, F.S. Politi, C.S. Kiminami, Influence of structural relaxation and partial dvitrfication on the corrosion resistance of Fe78Si9B13 amorphous alloy, Scripta Mater., 39(1998)329-334
    [24]C.A.C. Souza. S.E. Kuri, F.S. Politti, J.E. May, C.S. Kimimami, Corrosion resistance of amorphous and polycrystalline FeCuNbSiB alloys in sulphuric acid solution, J. Non-Cryst. Solids.247(1999)69-73
    [25]B. Porscha, H. Neuhauser, Combined measurements of length and modulus change, Phys. Status Solidi B,186(1994)119-126
    [26]Y.X. Wei, B. Zhang, R.J. Wang, M.X. Pan, D.Q. Zhao, W.H. Wang, Erbium-and cerium-based bulk metallic glasses, Scripta Mater.,54(2006)599-602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700