AZ31镁合金的变形行为及孪生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对具有挤压织构和压缩织构的AZ31镁合金进行了组织性能测试,实验结果表明孪生对AZ31镁合金的各向异性及拉压不对称性具有重要的影响。为了深入了解镁合金孪生变形机理,本文建立了一套全新的原子模型来描述镁合金的{1012}孪生、{1011}孪生和{1013}孪生过程中原子的运动规律,并在此基础上提出了3个用来衡量镁合金孪生发生难易的新参数:第一个是QPAG单元的旋转角度α;第二个是QPAG单元之间的相对滑移量λ;第三个是孪生过程中原子需要克服的原子变形量ε。这三个参数中的λ和ε可以作为衡量孪生发生难易的参数,该参数越大,孪生越难发生,这与实验结果是一致的。这两个参数作为衡量孪生发生难易的参数不是偶然的,而是具有实际的物理意义的,因为较大的QPAG单元滑动量和原子变形量意味着孪生的激活需要克服更高的应力。此外,QPAG原子群模型还可以很好地解释关于孪生的实验现象,如孪晶长大、退孪生以及孪生再结晶等。根据这些研究结果主要得到如下结论。
     ①对在723K下进行5h的均匀化的AZ31镁合金试样进行不同变形量的室温压缩实验,发现室温压缩产生的孪生组织随着变形量的增加而增加,形态也发生变化,孪晶的形状由最初的直而窄发展到宽而弯。对应变量0.1的室温压缩试样的EBSD分析表明,变形所获得孪晶绝大部分为{1012}拉伸孪晶,只有极少量的{1011}压缩孪晶。对退火后的室温压缩样进行组织观察发现在孪晶内部部析出了细小的再结晶晶粒。
     ②首次通过建立QPAG单元模型,揭示了AZ31镁合金孪生过程中原子的运动规律。研究发现孪生中原子的运动可以归结为QPAG单元的旋转,由于在QPAG单元内部不存在孪生阻力,所以可以认为孪生的阻力主要来自于QPAG单元之间的相对运动。在{1012}孪生中QPAG单元旋转15.9°,相邻的QPAG单元在界面处会发生0.349a的相对位移。
     ③在{1012}孪生中建立的QPAG模型也适用于描述{1011}孪生中的原子运动,在{1011}孪生中原子的运动仍然可以归结为QPAG单元的旋转,但是在{1011}孪生中存在两种运动模式不同的QPAG单元:一种只是简单地在y-o-z面内旋转;另一种不仅在y-o-z面内旋转,还要沿y轴移动0.5a的距离。这两种单元呈现出交替分布的特点,他们在孪生中都旋转14.7°,单元之间相邻原子的相对位移量为0.517a。尽管{1011}孪生中的QPAG单元旋转角度小于{1012}的,但由于其第二类QPAG单元的出现,致使其原子的运动复杂程度大大提高,进而导致了单元原子相对滑移量的增加,这是导致最终{1011}孪生较{1012}孪生难发生的主要原因。
     ④QPAG模型还适用于描述{1013}孪生中的原子运动。在{1013}孪生中与{1011}孪生相似,也存在两种交替分布的QPAG单元:一种只是简单地在y-o-z面内旋转;另一种不仅在y-o-z面内旋转,还有沿旋转轴向平移0.5a的距离。但不同的是{1013}中的QPAG单元与{1011}中的呈“手性”关系。这两种QPAG单元在孪生过程中都只旋转6.3°,但邻近单元之间原子的相对位移量为0.539a,高于{1011}孪生的0.517a,这可能是其较{1011}孪生更为少见的主要原因。
     ⑤镁合金孪生中QPAG原子群单元的旋转具有传递性。镁合金在孪生的过程中,其原子需要克服一定的弹性形变,该原子弹性形变存在一个孪生临界值,在形变达到临界值之前,撤消应力原子回到初始位置,材料不发生塑性变形;当变形超过临界值时,孪生瞬间发生。镁合金基体中的层错原子在孪生后的孪晶区因无法到达正常的格点位置而以混排原子的形式出现,这些混排原子处于热力学上的高能量状态,容易成为再结晶的形核点。
     ⑥镁合金中的孪晶界可以看做是由位向处于基体和孪晶之间的渐变QPAG原子群单元组成。孪晶界可以通过QPAG单元的旋转实现垂直于其法向的移动:当QPAG单元的旋转使晶界向基体方向运动时,孪晶长大;当QPAG单元的旋转使晶界向孪晶方向运动时,发生退孪晶。镁合金的基面滑移总是伴随着晶粒转动和晶界运动。由于孪晶界的特殊的原子排列使孪晶界滑移和伸缩难以实现,当基体和孪晶处于基面滑移的应力软取向时,孪晶界附近将发生位错积聚,成为断裂源的增殖区。
     ⑦在{1012}孪生,{1011}孪生和{1013}孪生中,原子需要克服变形量分别为0.024,0.031和0.038。这与AZ31镁合金室温压缩时所观察到的产生的孪晶绝大多数为{1012}孪晶,只有极少数为{1011}孪晶,而未发现{1013}孪晶的实验结果是一致的。这说明影响镁合金孪生变形难易程度的本质因素是孪生过程中原子需要克服的变形量。
Twinning deformation is considered an important factor affecting the anisotropy and the asymmetry of the AZ31 magnesium alloy through the tests of microstructures and properties of the material with extrusion textures and compression textures. To understand the mechanism of twinning deformation of magnesium alloys, a new model was established to describe the atomic motion in {1012} twinning, {1011} twinning and {1013} twinning, and on the basis of which three new parameters have been proposed to measure the difficulty degree of twinning: The first parameter is the rotational angle of the QPAG unitsα; the second parameter is the relative displacement magnitude between the adjacent QPAG unitsλ; the third parameter is the atomic deformation to overcome during twinningε. The later two parametersλandεcan be used to measure the difficulty degree of twinning; the lager these parameters are, the harder the twinning occurs, which is consistent with the experiment results. It is not accidental that these two parameters can be used to measure the difficulty degree of twinning, because they are of true physics meaning for that the larger value of the relative displacement magnitude and the atomic deformation means the higher stress to overcome. In addition, the QPAG model also can be used to explain the interesting phenomenon about twinning, such as twin growth, detwinning and twin recrystallization. According to these results some conclusions have been drawn about the deformation behavior and the twinning mechanism of AZ31 magnesium alloy.
     ①The AZ31 magnesium alloy samples homogenized at 723 K for 5 h were compressed to various strains at room temperature. The results show that the amount of twins is increased with the deformation, and the twin shape turn wider and bended from the original shape thin and straight. EBSD technique show that most of the twins are {1012} extension twins, and only a few of them are {1011} contraction twins. Static recrystallization occurred in the twins when the compressed samples were annealed with small recrystallized grains generated within the twins.
     ②The QPAG unit model was established for the first time to reveal the law of atomic motion during twinning in AZ31 magnesium alloy. The study indicates that the atomic motion during twinning can be ascribed to the rotational motion of the QPAG units. Since there is no resistance within interior of the QPAG units, it can be considered that the twin resistance mainly comes from the relative motion between the adjacent QPAG units. The QPAG units rotate an angle of 15.9°during {1012} twinning, and the relative displacement magnitude between the adjacent QPAG units is 0.349a.
     ③The QPAG unit model established in {1012} twinning is also suitable for describing the atomic motion in {1011} twinning, the atomic motion in {1011} twinning also can be ascribed to the rotational motion of the QPAG units. However, there exist two kind of QPAG units: one of them (type I) rotated only in the plane y-o-z;the other one (type II) not only rotate in the plane y-o-z, but also shift along the x axis for 0.5 a. These two kind of QPAG units are distributed alternatively. Both of these two kind of QPAG units rotate an angle of 14.9°during {1011} twinning, and the relative displacement magnitude between the adjacent units is 0.517a. Though the rotational angle in {1011} twinning is smaller than in {1012} twinning, the appearance of the type II QPAG units make the atomic motion in {1011} twinning become more complex and the relative displacement magnitude larger, which may be the essential reason that {1011} twinning is harder to occur than {1012} twinning.
     ④The QPAG unit model is also suitable for describing the atomic motion in {1013} twinning. There exist totally two kind of alternately distributed QPAG units in {1013} like in {1011} twinning: one of them (type I) rotated only in the plane y-o-z;the other one (type II) not only rotate in the plane y-o-z, but also shift along the x axis for 0.5 a, the difference is that the QPAG units in {1013} twinning represent a“chiral”relation with that in {1011} twinning. Both of these two kind of QPAG units rotate an angle of only 6.3°during {1013} twinning. However, the relative displacement magnitude between the adjacent units is 0.539a, larger than the value in {1011} twinning, this may be the reason that {1013} twins are more infrequent to be observed than {1011} twins.
     ⑤The rotational motion of the QPAG units during twinning has a property of transfer. The twinning atoms are required to overcome a certain deformation during twinning, and there exist a critical value about the deformation to overcome. When the deformation is before the critical value, the twinning atom will return to the original position once the stress is removed;when the deformation pass the critical value, the twinning will occur. The stacking fault atoms can not reach the normal position in the twin after twinning, and they arranged in a disordered state. Thermodynamically, these disordered atoms are in a high-energy state, and thus inclined to become the recrystallization sites.
     ⑥The twin boundaries can be regarded as composed of the QPAG units oriented between the matrix and twin gradually. The twin boundaries can move along the norm direction through the rotation of these QPAG units: twin growth occurs when the rotation of the QPAG units make the twin boundaries move to the matrix;detwinning takes place when the rotation of the QPAG units make the twin boundaries move to the twin. Basal slip in the magnesium always results in the grain rotation and the grain boundary movement. Because the twin boundary sliding is difficult to occur for the special atomic arrangement of the twin boundaries, dislocations will accumulate at twin boundary when the twin and matrix in a soft orientation, and thus the twin boundaries will become the nucleation zone of fracture.
     ⑦The values of atomic deformation need to overcome in {1012} twinning, {1011} twinning and {1013} twinning are 0.024, 0.031 and 0.038, respectively. The order of these value is consistent with the observation in the experiment of the room temperature compression of the AZ31 magnesium alloy, that is, the {1012} twins are the easiest to form, followed by {1011} twins, and the {1013} twins are the hardest to form. In conclusion, the factor that determine the difficulty degree of twinning to occur is the atomic deformation need to overcome during twinning.
引文
[1] E. Aghion, B. Bronfin. Magnesium alloys development towards the 21st century [J] Mater. Sci. Forum, 2000, 350-351: 19-28.
    [2]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社, 2004.
    [3] B. L. Mordike, T. Ebert. Magnesium properties-applications-potential [J]. Mater. Sci. Eng. A, 2001, A302(1): 37-45.
    [4] I. J. Polmear. Magnesium alloys and applications [J]. Mater. Sci. Techn., 1994, 10(2): 1-16.
    [5] H. Friedrich, S. Schumann. Research for a“new age of magnesium”in the automotive industry [J].
    [6] M. Dwain, A. Magers. Global review of magnesium parts in automobiles [J]. Light Metal Age, 1996, 54(9-10): 60-63.
    [7]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修, 2002, 4, 41-42.
    [8] Y. Kojima. Platform science and technology for advanced magnesium alloys [J]. Mater. Sci. Forum, 2000, 350-351: 3-18.
    [9] C. J. Bettles, M. A. Gibson. Current Wrought Magnesium Alloys: Strengths and Weaknesses [J]. JOM, 2005, 57(5): 46-49.
    [10] F. H. Froes, D. Eliezer, E. Aghion.The Science, Technology, and Applications of Magnesium [J]. JOM, 1998, 50(9): 30-34.
    [11] J. F. Nie. Preface to viewpoint set on: phase transformations and deformation in magnesium alloys [J]. Scripta Mater. 2003, 48: 981-984.
    [12] K. U. Kainer, F. von Buch. The current state of technology and potential for further development of magnesium applications [J]. Mater. Sci. Forum, 2003, 419-422: 1-22.
    [13] D. Eliezer, E. Aghion, F. H. Froes. Magnesium Science, Technology and Applications [J]. Advanced Performance Materials, 1998, 5: 201-212.
    [14] A. Styczynski, C. Hartig, J. Bohlen. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Scripta Mater., 2004, 50: 943-947.
    [15] W. J. Kim, H. G. Jeeng. Mechanical Properties and Texture Evolution in ECAP Processed AZ61 Mg alloys [J]. Mater. Sci. Forum, 2003, (201): 419-422.
    [16] C. Jaschik, H. Haferkam, M. Niemeyer. New Magnesium Wrought Alloys. in: Kainer K U(Ed.), Proc Magnesium Alloys and their Applications. Munich, Germany, 2000: 41~46.
    [17]夏琴香.镁合金车轮是汽车轻量化的发展方向[J].中国有色金属报, 2008, 9, 4: 007版镁业.
    [18] A. Couret, D. Cailiard. An in situ study of prismatic glide in magnesium–I.The rate controlling mechanism [J]. Acta Metall., 1985, 33(8): 1447-1454.
    [19] M. Eddahbi, J. A. del Valle, M. T. P′erez-Prado, et al. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling [J]. Mater. Sci. Eng. A, 2005, 410–411: 308–311.
    [20] D. L. Yin, K. F. Zhang, G. F. Wang, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Mater. Sci. Eng. A, 2005, 392: 320–325.
    [21] J. W.Christian, S. Mahajan. Deformation twinning [J]. Progress in Materials Science, 1995, 39: 1-157.
    [22] M. H. Yoo, J. R. Morris, K. M. Ho, et al. Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility [J]. Metallurgical and Materials Transactions A [J], 2002, 33(3): 813-822.
    [23]钟家湘,郑秀华,刘颖编著.金属学教程.北京:北京理工大学出版社, 1995, 304
    [24] P. G. Partridge. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metallurgical Reviews, 1967, 12: 169-194.
    [25] H. Yoshinage, R. Horiuchi. On the nonbasal slip in magnesium crystals [J]. Transactions of Japan Institute of Metals, 1963, 5: 14-21.
    [26] D. J. Bacon, V. Vitek. Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals [J]. Metallurgical and Materials Transactions, 2002, 33A: 721-733.
    [27] A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation Of Plastic Deformation And Dynamic Recrystallization In Magnesium Alloy ZK60 [J]. Acta Mater., 2001, 49: 1199-1207.
    [28] A. Staroselsky, L. Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. Inter J Plast., 2003;19: 1843-1864.
    [29]肖林.密排六方金属的塑性变形.稀有金属材料与工程, 1995, 24(6): 21-28
    [30] M. H. Yoo, S. R. Agnew, J. R. Morris, et al. Non-basal slip systems in hcp metals and alloys: source mechanisms [J]. Mater. Sci. Eng. A, 2001, 319-321(1/2): 87-92.
    [31] A. Couret, D. Cailiard. Prismatic slip in beryllium I: the controlling mechanism at the peak temperature [J]. Philosophical Magazine A, 1989, 59(4): 783-800.
    [32] A. Galiyev, O. Sitdikov, R. Kaibyshev. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy [J]. Materials Transactions, 2003, 44(4): 426-435.
    [33] A. Couret, D. Cailiard. Prismatic glide in divalent hcp metals [J]. Philosophical Magazine A,1991, 63(5): 1045-1057.
    [34] A. Couret, D. Cailiard. An in situ study of prismatic glide in magnesium-II.microscopic activation parameters [J]. Acta Metall., 1985, 33(8): 1455-1462.
    [35] A. Couret, D. Cailiard. An in situ study of prismatic glide in magnesium-Ⅰ.the rate controlling mechanism [J]. Acta Metallurgic, 1985, 33(8): 1447-1454.
    [36] P. S. Bate, W. B. Hutchinson. Grain boundary area and deformation [J]. Scripta Mater., 2005, 52: 199–203.
    [37] Y. Mishin, Chr. Herzig. Grain boundary diffusion: recent progress and future research [J]. Mater. Sci. Eng. A, 1999,260: 55–71.
    [38] J. C. Tan, M. J. Tan. Superplasticility and grain boundary sliding characteristics in two stage deformation of Mg-3Al-Zn Alloy sheet [J]. Mater. Sci. Eng. A, 2003, 339(1): 81-89.
    [39] R. Ohyama, J. Koike, T. Kobayashi, et.al. Enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy [J].Mater. Sci. Forum, 2003, 419-422(1): 237-241.
    [40] J Koike. New deformation mechanisms in fine-grain Mg alloy [J]. Mater. Sci. Forum, 2003, 419-422(1): 189-194.
    [41] A. Singh, M. Watanabe, A. Kato, et al. Twinning and the orientation relationships of icosahedral phase with the magnesium matrix [J]. Acta Mater. 2005, 53: 4733-4742.
    [42] X.S. Wang, L. Jin, Y. Li, et al. Effect of equal channel angular extrusion process on deformation behaviors of Mg-3Al-Zn alloy [J]. Materials Letters, 2008, 62: 1856–1858.
    [43]陈振华,杨春花,镁合金塑性变形中孪生的研究.材料导报, 2006(20), 8: 107-113.
    [44] M. H. Yoo, S. R. Agnew, J. R. Morris, et al. Non-basal slip systems in HCP metals and alloys: source mechanisms [J]. Mater. Sci. Eng. A, 2001, 319: 87-92.
    [45] A. Galiyev, O. Sitdikov, R. Kaibyshev. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy [J]. Mater. Trans., 2003, 44(4): 426-435.
    [46] P. B. Hirsch, J. S. Lally. The deformation of magnesium single crystals [J]. Philosophical Magazine, 1965, 12: 595-648.
    [47] Y. N. Wang, J. C. Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy [J]. 2007, 55(3): 897-905.
    [48] Y. N. Wang, J. C. Huang. Texture analysis in hexagonal materials [J]. Materials chemistry and physics, 2003, 81: 11-26.
    [49] S. -B. Yi, C. H. J. Davies, H.-G. Brokmeier, et al. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading [J] Acta Mater., 2006, 54: 549-562.
    [50]汪凌云,范永革,黄光杰,等.AZ31B镁合金板材的织构[J].材料研究学报, 2004, 18(5): 466-470.
    [51] T. Walde, H. Riedel. Modeling texture evolution during hot rolling of magnesium alloy AZ31 [J]. Mater. Sci. Eng. A, 2007, 443: 277-284.
    [52] J. A. Valle, M. T. Pérez-Prado, O. A. Ruano. Texture evolution during large-strain hot rolling of the AZ61 Mg alloy [J]. Mater. Sci. Eng. A, 2003, 355: 68-78.
    [53] W. J. Kim, J. B. Lee, W. Y. Kim, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling [J].Scripta Mater., 2007, 56: 309-312.
    [54] S. H. Kim, B. S. You, C. D. Yim, et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets [J]. Materials Letters, 2005, 59: 3876-3880.
    [55] Y. Yoshida, L. Cisar, S. Kamado, et al. Texture development of AZ31 magnesium alloy during ECAE processing [J]. Mater. Sci. Forum, 2003, 419-422: 533-538.
    [56] L. Helis, K. Okayasu, H. Fukutomi. Microstructure evolution and texture development during high-temperature uniaxial compression of magnesium alloy AZ31 [J]. Mater. Sci. Eng. A, 2006, 430: 98-103.
    [57] Y. Akihiro, H. Zenji, G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation [J]. Mater. Sci. Eng., 2001, (300): 142-147.
    [58] S. R. Agnew, P. Mehrotra, T. M. Lillo, et al. Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations [J]. Acta Mater., 2005, 53: 3135-3146.
    [59] R. Gehrmann, M. M. Frommert, G. Gottstein. Texture effects on plastic deformation of magnesium [J]. Mater. Sci. Eng. A, 2005, 395: 338-349.
    [60] H. Somekawa, T. Mukai. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J]. Scripta Mater., 2005, 53: 541-545.
    [61] H. Watanabe, A. Takara, H. Somekawa, et al. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy [J]. Scripta Mater. 2005, 52: 449-454.
    [62] Y. Chino, J. S. Lee, K. Sassa, et al. Press formability of a rolled AZ31 Mg alloy sheet with controlled texture [J]. Materials Letters, 2006, 60: 173-176.
    [63] M. R. Barnett, M. D. Nave, C. J. Bettles. Deformation microstructures and textures of some cold rolled Mg alloys [J]. Mater. Sci. Eng. A, 2004, (386): 205-211.
    [64] A. Styczynski, C. Hartig, J. Bohlen, et al. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Physics and Technology of Materials, 2004, 50: 943~947.
    [65] M. Mabuchi, M. Nakamura. Microstructural Evolution and Superlasticity of Rolled Mg-9A1-1Zn Alloy [J]. Mater. Sci. Eng. A, 2000, 290: 139-144.
    [66] Y. Q. Cheng, Z. H. Chen, W. J. Xia, et al. Effect of channel clearance on crystal orientation development in AZ31magnesium alloy sheet produced by equal channel angular rolling [J]. J. Mater.Process. Techn. 2007, 184: 97-101.
    [67] H. Watanabe, T. Mukai, K. Ishikawa. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy [J] J. Mater. Process. Techn. 2007, 182: 644–647.
    [68] M.T. Perez-Prado, .J. A. Del Valle. Microstructural Evolution During Large Strain Hot Rolling of an AM60 Mg Alloy [J]. Scripta Mater., 2004, 50(5): 661-667.
    [69] W. J. Xia, Z. H Chen, D. Chen, et al. Microstructure and mechanical properties of AZ31magnesium alloy sheets produced by differential speed rolling [J] J. mater. process. Techn. 2 0 0 9, 209: 26-31.
    [70] T. C. Chang, J. Y. Wang. Grain Refining of Magnesium Alloy AZ31 by Rolling [J]. J. Mater. Process. Techn., 2003, 140(3): 588-593.
    [71]詹美燕,李元元,陈维平,陈宛德. AZ31镁合金轧制板材在退火处理中的组织性能演变.金属热处理, 2007( 32)7, 8-12.
    [72] J. Liu, Z. S. Cui. Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear [J] J. Mater. Process. Tech., 2009, 209: 5871-5880.
    [73] R. Matsumoto. Ductility improvement methods for commercial AZ31B magnesium alloy in cold forging [J] Trans. Nonferrous Met. Soc. China, 2010, 10: 1275-1281.
    [74] N. Ogawa, K. Osaka da. Forming limit of magnesium alloy at elevated temperature for precision forging [J]. Int.J.Machine Tools and Manufacture, 2002, 42: 607-614.
    [75] N. Ogawa, M. Shiomi, K. Osakada. Forming limit of magnesium alloy at elevated temperatures for precision forging [J]. International Journal of Machine Tools & Manufacture, 2002, 42: 607–614.
    [76] D. B. Shan, W. C. Xu, Y. Lu. Study on precision forging technology for a complex-shaped light alloy forging [J] J. Mater. Process. Tech., 2004, 151: 289-931.
    [77] R. Matsumoto, K. Osakada. Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press [J] J. Mater. Process. Tech., 2010, 210: 2029-2035.
    [78] G. A. Rozak, R. E. Purgert. Compressing Forming of Metal [J]. Magnesium, 1998, 27(3): 1-6.
    [79] C. F. Chan, M. S. Yong, C. J. Tay, et al. The Influence of Press Parameters on Forged Magnesium Alloys [J]. Mater. Sci. Forum, 2003, 437/438: 427-430.
    [80] N. Ogawa, M. Shiomi, K. Osakada. Fundamental Study on Forging of Magnesium Alloys [C] Proceedings of 2nd International Seminar on Precision Forging. Osaka, 2000: 219-222.
    [81] J. K. Hwang, K. Y. Sohn, K. H. Kim , et al. CAE Application to Press Forging of Magnesium Alloys [J]. Mater. Sci. Forum, 2003, 419-422: 371-376.
    [82] L. Jin, D. L. Lin, D. L. Mao, et al. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion [J]. Materials Letters, 2005, 59: 2267-2270.
    [83] J. Y. Suh, J. H. Han, K. H. Oh, et al. Effect of deformation histories on texture evolution during equal-channel and dissimilar-channel angular pressing [J]. Scripta Mater., 2003, 49(2): 185-190.
    [84] J. C. Tan, M. J. Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Mater. Sci. Eng. A, 2003, 339: 124-132.
    [85] M.Y. Zheng, S.W. Xu, X. G. Qiao, et al. Compressive deformation of Mg-Zn-Y-Zr alloy processed by equal channel angular pressing [J]. Mater. Sci. Eng.A, 2008, 483-484: 564-567.
    [86] T. C. Chang, J. Y. Wang, S. Lee, etal. Grain refining of magnesium alloy AZ31 by rolling [J]. J. Mater. Proc. Techn., 2003, 140: 588-591.
    [87] H. K. Lim, D. H. Kim, J. Y. Lee, et al. Effect of grain size on the tensile deformation of wrought Mg-MM-Al-Zn-Sn alloy [J]. Materials Letters, 2008, 62: 2271-2274.
    [88] N. V. Ravi Kumar, J. J. Blandin, C. Desrayaud, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing [J]. Mater Sci Eng A., 2003, 359: 150-157.
    [89] A. Galiyev, R. Kaibyshev, T. Sakai. Continuous dynamic recrystallization in magnesium alloy [J]. Materials Science Forum, 2003, 419-422 (1): 509-514.
    [90] S. E. Ion, F. J. Humphreys, S. H. White. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Mater. 1982, 30: 1909-1919.
    [91] X. Yang, H. Miura, T. Sakai. Dynamic nucleation of new grains in magnesium alloy during hot deformation [J]. Mater. Sci. Forum, 2003, 419-422(1): 515-520.
    [92] M. M. Myshlyaev, H. J. McQueen, A. Mwembela, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-/Al-/Zn alloy [J]. Mater. Sci. Eng. A, 2002, 337: 121-133.
    [93] S. E. Ion, F. J. Humphreys, S. H. White. Dynamic recrystallization and development of microstructure during the high temperature deformation of magnesium [J]. Acta Metall., 1982, 30(10): 1909-1919.
    [94] J. C. Tan, M. J. Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Mater. Sci. Eng. A, 2003, 339 (1-2): 124-132.
    [95] A. Galiyev, R. Kaibyshev, G. Gottestein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60 [J]. Acta Mater. 2001, 49: 1199-1207.
    [96] M. R. Barnett. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Mater Sci Forum. 2003, 419-422: 503-508.
    [97] X. Y. Yang, H. Miura, T. Sakai. Recrystallization behaviour of fine-grained magnesium alloy after hot deformation [J]. Trans. Nonferrous Met. SOC. China, 17(2007, 17: 1139-1142.
    [98] A. G. Beer, M. R. Barnett. Microstructure evolution in hot worked and annealed magnesium alloy AZ31 [J]. Mater. Sci. Eng. A 485 2008, 485: 318-324.
    [99] S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi. Dynamic recrystallization in AZ31 magnesium alloy [J]. Mater. Sci. Eng. A, 2007, 456: 52–57.
    [100] H. Watanabe, H. Tsutsui, T. Mukai, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. International Journal of Plasticity, 2001, 17: 387-397.
    [101] R. O. Kaibyshev, O. S. Sitdikov. Structural changes during plastic deformation of pure magnesium [J]. Phys. Met. Metall. 1992;73: 635-642.
    [102] M. M. Myshlyaev, H. J. McQueen, A. Mwembela, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy [J]. Mater. Sci. Eng. A. 2002, 337: 121-133.
    [103] A. Galiyev, R. Kaibyshev, T. Sakai. Continuous dynamic recrystallization in magnesium alloy [J]. Mater. Sci. Forum. 2003, 419-422: 509-514.
    [104] A Galiyev, R. Kaibyshev, G. Gottestein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60 [J]. Acta Mater. 2001, 49: 1199-1207.
    [105]陈振华,夏伟军,严红革等.变形镁合金[M].第一版.北京:化学工业出版社, 2005: 48-100.
    [106] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature [J]. Metall. Mater. Trans. A. 2005, 36: 1689-1696.
    [107] I. J. Polmear. Magnesium alloys and applications [J]. Mater. Sci. & Tech., 1994, 10: 1-14.
    [108] T. Al-Samman, G. Gottstein. Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms [J]. Mater. Sci. Eng. A, 2008, 488: 406–414.
    [109] M.R. Barnett, Z. Keshavarz, A.G. Beer, et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy [J]. Acta Mater. 2008, 56: 5-15.
    [110] K. Máthis, F. Chmelìk, Z. Trojanová, et al. Investigation of some magnesium alloys by use of the acoustic emission technique [J]. Mater. Sci. Eng. A, 2004, (387–389): 331-335.
    [111] J. Jiang, A. Godfrey, W. Liu, et al. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31 [J]. Mater. Sci. Eng. A, 2008, (483–484): 576–579.
    [112] Y. B. Yang, F. C. Wang, C. W. Tan, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression [J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043-1046.
    [113] M. R. Barnett. Twinning and the ductility of magnesium alloys PartⅠ:“Tension”twins [J]. Mater. Sci. Eng. A, 2007, 464: 1-7
    [114] M. R. Barnett. Twinning and the ductility of magnesium alloys PartⅡ.“Contraction”twins [J]. Mater. Sci. Eng. A, 2007, 464: 8-16.
    [115] Y. Chino, K. Kimura, M. Mabuchi. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy [J]. Mater. Sci. Eng. A 2008, 486: 481-488.
    [116] A. G. Cracker, M. Bevis. The Science Technology and Application of Titanium (edited by R. Jaffee and N. Promise]) p. 453. Pergamon Press, Oxford (1970).
    [117] N. S. Stoloff and M. Gensamer, Trans. Met. Sot. Amer. Inst. Min. (Metall.) Eng. 224, 70 (1963).
    [118] M. Matsuda, S. Ii, Y. Kawamura, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy [J]. Mater. Sci. Eng. A 2004, 386: 447–452.
    [119] A. Staroselsky, L. Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. International Journal of Plasticity, 2003, 19: 1843-1864.
    [120] L. Wu, S. R. Agnew, D. W. Brown, et al. Internal stress relaxation and load redistribution during the twinning-detwinning- dominated cyclic deformation of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 3699-3707.
    [121] S. Mahajan, D. F. Williams. Deformation twinning in metals and alloys [J]. Int. Met. Rev., 1973, 18: 43-61.
    [122] S. Mendelson . Dislocation dissociations in hcp metals [J]. J. Appl. Phys., 1970, 41: 1893-1910.
    [123] P. Yang, Y. Yu, L. Chen, W. Mao. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta mater., 2004, 50: 1163 - 1168.
    [124] Q Liu, D. Juul Jensen, N. Hansen. Effect of grain orientation on deformation structure in cold-rolled polycrystal-line aluminium [J]. Acta mater., 1998, 46: 5819-5838.
    [125] M. R. Barnett, D. Atwell, A. G. Beer. Effect of grain size on the deformation and dynamic recrystallization of Mg-3Al-1Zn [J]. Mater. Sci. Forum, 2004, 467-470: 435-440.
    [126] K.Mathis, Z. Trojanova, P. Lukac, et al. Modeling of hardening and softening processes in Mg alloys [J].J. Alloy. Compd., 2004, 378: 176-179.
    [127] P. Klimanel, A. Potzsch. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates [J]. Mater. Sci. Eng. A, 2002, 324: 145-150.
    [128] J. Koike. Dislocation plasticity and complementary deformation mechanisms in polycrystalline Mg alloys [J]. Mater. Sci. Forum, 2004, 449-452: 665-668.
    [129] M. T. Perex-Prado, J. A. Valle, O. A. Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling [J].Scripta Mater., 2004, 50: 667-671.
    [130] C. H. Caceres, T. Sumitomo, M. Veidt. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading [J]. Acta Mater., 2003, 51: 6211-6218.
    [131] J.A. del Valle, O.A. Ruano. Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy [J]. Mater. Sci. Eng. A, 2008, 487: 473–480.
    [132] B. H. Yoshinaga, R. Horiuchi. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis [J].Trans JIM., 1963, 4: 1?8
    [133] S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Haghshenas. A study on the effect of thermo-mechanical parameters on the deformation behavior of Mg–3Al–1Zn [J]. Mater. Sci. Eng. A, 2008, 497: 438–444.
    [134] Y. C. Lee, A. K. Dahle, D. H. StJohn. Grain refinement ofmagnesium [J]. Magnesium Technology, 2000: 211-218.
    [135] H. S. Lee, J. S. Park, Y. W. Chang. An internal variable approach to high temperature deformation and superplasticity of Mg alloys [J]. J Mater. Process. Techn., 2007, 187–188: 550–554.
    [136] S. Spigarelli, M. El Mehtedi, M. Cabibbo, et al. Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy [J]. Mater. Sci. Eng. A, 2007, 462: 197–201.
    [137] S. Kamado, T. Ashie, H. Yamada, et a1. Improvement of tensile properties of wrought magnesium alloys by grain refining [J]. Mater. Sci. Forum, 2000, 350-351: 65-72.
    [138] W. Hiroyuki, M. Toshiji, I. Koichi. Low temperature susperplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion [J]. Scripta Mater., 2002, (46): 851-854.
    [139] S. M. Matsuoka, S. Miyamoto. Effect of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions [J]. J. Mater. Process. Techn., 2003, (2): 207-210.
    [140] Y. Yu, C. Lawrence, K. Shigeharu. Effect of microstructural factors on tensile properties of an ECAE-Processed AZ31 Magnesium alloy [J]. Mater. Trans., 2003, (4): 468-471.
    [141] Y. J. Chen, Q. d. Wang, J. G. Peng, et al. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy [J]. J. Mater. Process. Techn., 2007, 182: 281-285.
    [142] H. Watanabe, H. Tsutsui, T. Mukai, et al. Superplastic behavior in commercial wrought magnesium alloys [J]. Mater. Sci. Forum, 2000, 350-351: 171-176.
    [143] A. Bussiba, A. Ben Artzy, A. Shtechman, et al. Grain refinement of AZ31 and ZK60 Mg alloys—towards superplasticity studies [J]. Mater. Sci. Eng. A2001, 302: 56–62.
    [144] G. Garcés, F. Domínguez, P. Pírez, et al. Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92 [J]. J. Alloy. Compd., 2006, 422: 293–298.
    [145] T. Al-Samman, G. Gottstein. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng. A, 2008, 490: 411–420.
    [146] J. Koike, T. Kobayashi, T. Mukai, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51(7): 2055-2065.
    [147]杨歊? AZ31镁合金高温变形时的微细晶粒组织的生成[J].轻金属, 2002, 52(7): 318.
    [148] L. Jin, D. L. Lin, D. L. Mao. Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion [J]. Mater. Sci. Eng. A, 2006, 423(1-2): 247–252.
    [149] S. Queyreau, G. Monnet, B. Devincre. Slip systems interactions inα-iron determined by dislocation dynamics simulations [J]. International Journal of Plasticity 2009, 25: 361-377.
    [150] A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60 [J].Acta Mater., 2001, 49(7): 1199-1207.
    [151] N. Miyazaki. Dislocation density evaluation using dislocation kinetics model Journal of Crystal Growth [J]. 2007, 303: 302–309.
    [152] W. J. Kim, S. I. Hong, Y. S. Kim. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J].Acta Mater., 2003, (51): 3293.
    [153] F. J. Humphreys, M. Ferry. On the role of twinning in the Recrystallization of aluminium [J]. Scripta Mater., 1996, 35: 99-105.
    [154] C. W. Su, L. Lu, M. O. Lai. A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies [J]. Mater. Sci. Eng. A, 2006, 434(1-2): 227-236.
    [155] B. Klaus. Indirect Extrusion of AZ31 and AZ61 [J]. Magnesium Technology, 2003, (1): 247.
    [156] D. K. Wilsdorf. High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDs theory [J]. Scripta Mater., 1997, (36): 173-181.
    [157] M. Mabuch, M. Nakamura, K. Ameyama. Superplastic behavior of magnesium alloy processed by ECAE [J]. Mater. Sci. Forum, 1999, 304-306 : 67-72.
    [158] R. Z. Valiev, A. V. Korznikov, R. Mulyklov. Structure and properties of ultrafine-grained materials produced by severe plastic deformation [J]. Mater. Sci. Eng., 1993, (168): 141-148.
    [159] S. Kamado, T. Ashie, H. Yamada, etal. Improvement of tensile properties of wrought magnesium alloys by grain refining [J]. Mater. Sci. Forum, 2000, 350-351: 65-72.
    [160] T. Mukai, H. Watanabe, K. Higashi. Grain refinement of commercial magnesium alloys for high strain rate superplastic forming [J]. Mater. Sci. Forum, 2000, 350-351: 159-170.
    [161] N. Ono, R. Rowak. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium [J]. Material Letters, 2003, 58: 39-45.
    [162] Z. Zúberová, Y. Estrin, T.T. Lamark, et al. Effect of equal channel angular pressing on the deformation behaviour of magnesium alloy AZ31 under uniaxial compression [J]. J. Mater. Process. Tech., 2007, 184: 294–299.
    [163] A. Jain, O. Duygulu, D. W. Brown, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet [J]. Mater. Sci. Eng. A, 2008, 486: 545–555.
    [164] Y. N. Wang, J. C. Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy [J]. Acta Mater., 2007, 55: 897-905
    [165] J. W. Christian, S. Mahajan. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39:1.
    [166] A. G. Beer, M. R. Barnett. The post-deformation recrystallization behaviour of magnesium alloy Mg–3Al–1Zn [J]. Scripta Mater. 2009, 61: 1097–1100.
    [167] S. R. Kalidindi. Modelling anisoptropic strain hardening and deformation textures in low stacking fault energy materials [J]. International Journal of Plasticity, 2001, 17: 837.
    [168] K. Mueller, S. Mueller. Serve plastic deformation of the magnesium alloy AZ31 [J]. J. Mater. Proc. Tech., 2007, 187–188: 775-779.
    [169] K. Xia, J. T. Wang, X. Wu, et al. Equal channel angular pressing of magnesium alloy AZ31 [J]. Mater. Sci. Eng. A, 2005, 410–411: 324-327.
    [170] S. H. Kang, Y. S. Lee, J. H. Lee. Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics [J]. J. Mater. Proc. Tech., 2008, 27: 436-440.
    [171] Z. Keshavarz, M. R. Barnett. EBSD analysis of deformation modes in Mg–3Al–1Zn [J].Scripta Mater., 2006, 55: 915-918.
    [172] R. Panicker, A. H. Chokshi, R.K. Mishra, et al. Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy [J]. Acta Mater., 2009, 57: 3683-3693.
    [173] S. H. Park, S. G. Hong, C. S. Lee. Activation mode dependent {10 1 12} twinning characteristics in a polycrystalline magnesium alloy [J] Scripta Mater., 2010, 62: 202–205.
    [174] X. Wang, E. Brünger, G. Gottstein. The role of twinning during dynamic recrystallization in alloy 800H [J]. Scripta Mater. 2002, 46: 875-880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700