石墨烯基纳米复合材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2004年首次报道独立存在的石墨烯以来,它在力学、热学、电学、光学等方面的优异性能,使之迅速成为目前材料科学和凝聚态物理研究的一个热点,这归因于石墨烯的独特的二维晶体结构。本论文主要研究了石墨烯的制备、共价/非共价修饰及其初步应用。主要内容如下:
     1报道了通过重氮盐反应和原子转移自由基聚合(ATRP)相结合的方法实现了石墨烯的共价接枝。拉曼光谱(Raman)和红外光谱(FTIR)等手段证明了石墨烯和聚苯乙烯之间的共价键合。热失重分析(TGA)结果表明共价接枝在石墨烯表面的聚苯乙烯含量达到了82 wt%。由于石墨烯片层对聚苯乙烯链强烈的限制效应,DSC测试发现共价接枝在石墨烯表面的聚苯乙烯的玻璃化转变温度相对于自由的聚苯乙烯提高了15℃左右,这从侧面证明了石墨烯和聚苯乙烯之间的共价键合。而原子力显微镜(AFM)和透射电镜(TEM)为共价接枝提供了直观的证据:接枝在石墨烯片层表面的聚苯乙烯链的厚度大约为1 nm,并且片层中间区域的厚度比边缘区域更高。复合材料的杨氏模量和断裂强度随着接枝石墨烯含量的增加而提高,当添加量达到0.9 wt%的时候,其复合膜的杨氏模量和断裂强度分别增加了57.2%和69.5%。
     2.我们系统地调控了接枝在单层石墨烯表面的聚合物的接枝密度和聚合物的链长:通过控制重氮盐反应物的浓度,我们控制了聚合物在石墨烯表面的接枝密度;通过控制原子转移自由基聚合(ATRP)过程中的单体浓度,我们有效地调控了接枝在石墨烯表面的聚合物链长(Mn=21300~78900 g/mol)。TEM结果直观地显示了这些样品的不同表面形貌:低接枝密度的石墨烯表面聚苯乙烯的分布非常不均匀,而高接枝密度石墨烯表面聚苯乙烯分布非常均匀,并且随着分子量的增加,聚苯乙烯的分布变得越来越连续,直至在石墨烯表面形成了一层聚合物膜。DSC结果表明不同的接枝样品中,石墨烯对接枝聚苯乙烯链的限制情况也是不同的。同样,不同的接枝样品对复合材料热导率的影响也是有差异的:低接枝密度的石墨烯样品的增强效果优于高接枝密度的石墨烯样品,并且都比未经修饰的原料石墨和碳纳米管的增强效果要显著,这说明有效的界面结构控制对于提高复合材料的热性能是可行的。
     3.利用异氰酸酯和胺基的反应将环氧树脂的固化剂(芳香二胺,MDA)接枝到石墨烯的表面,制备了有机改性的石墨烯,然后通过固化反应将其交联到环氧树脂基体中。利用石墨烯表面的富胺基环境和位阻效应在环氧树脂中原位构筑了层次结构的中间相,它不仅有效地增强了在石墨烯和基体树脂间的载荷转移,而且增强了应力耗散能力。得到的复合材料具有很好的力学增强效果:含0.6 wt%石墨烯的复合材料,其抗弯曲强度增加了91.5%,而韧性增加了93.8%。这种方法有可能应用于发展轻质的、强韧聚合物纳米复合材料。
     4.通过简单的自主装方法制备了多功能的超疏水石墨烯/聚己基噻吩(P3HT)复合膜。扫描电子显微镜(SEM)和原子力显微镜(AFM)的结果显示了石墨烯/P3HT复合膜多尺度上的粗糙度:非溶剂(甲醇)的加入促进了聚己基噻吩链自发地沉积在石墨烯表面,形成了纳米尺度的粗糙度,同时不规则堆砌的石墨烯片层构成了微米尺度的粗糙度。得到的复合膜是多孔、轻质、环境稳定和良好的油水分离效率。其电导率达到了6500 Sm-1,这个值要比已报道的碳纳米管-聚合物超疏水膜的电导率高出很多,并且其比电磁屏蔽效率是固体铜的4倍。同时,我们也将这种协同自组装的方法使用到了超亲水蒙脱土(MMT)中,并成功地制备了具有超疏水功能的蒙脱土(MMT)/P3HT复合膜。
     5.通过简单的洗涤-抽滤相结合的方法制备了具有层状结构的氧化石墨(GO)/聚乙烯醇(PVA)复合膜。GO/PVA复合膜表现出了优异的力学性能:厚度为46μm的复合膜的断裂强度为276 MPa,断裂伸长率达到了9.2%,当用交联剂交联后,其力学性能得到了进一步的提高。并且GO/PVA复合膜具有pH响应特性,这在层状复合膜中属于首次报道。利用这个特性,我们成功地将Ag纳米颗粒负载在GO/PVA复合膜中,并发现我们制备的Ag-GO/PVA层状膜具有拉曼增强的功能。
     6.通过改变共价接枝在石墨烯表面的聚合物链长的方法来调控纳米颗粒在石墨烯表面的负载量和分布。接枝聚合物(PAA)对金属离子的锚固作用使纳米颗粒在石墨烯表面的生长动力学得到很好地控制,从而得到纳米颗粒尺寸分布较窄的样品。
Graphene has attracted considerable attention from materials science and condensed matter physics due to its excellent mechanical, electric, thermal and optical properties. All of these can be attributed to its peculiar two-dimensional lattice structures. In this dissertation, we studied its preparation, functionalization and preliminary applications. The detailed results are summarized as follows:
     1. We firstly developed a new method to covalent functionalization of graphene by combining diazonium addition and atom transfer radical polymerization (ATRP). Raman spectra and FTIR spectra proved the existence of covalent bonds between graphene nanosheets and polystyrene (PS). TGA result shows that the PS content grafting on the surface of graphene nanosheets is about 82 wt%. Moreover, DSC result indicates that the glass transition temperature (Tg) of PS grafting on the grapheme surface is 15℃higher than that of free PS, which is related to the remarkable restriction effect of graphene nanosheets. Atomic force microscope (AFM) and transmission electron microscope (TEM) provided the direct evidence for covalent functionalization. The thickness of grafting PS layers on the grapheme surface is about 1 nm and furthermore, the thickness at the central area is higher than that at the peripheral area. The mechanical properties of nanocomposite films increase as increasing functionalized graphene contents. For the PS nanocomposite with 0.9 wt% graphene nanosheets, the Young modulus and strength at break respectively increase 57.2 and 69.5% relative to the pristine polymer.
     2. We covalently grafted PS chains onto the graphene surface, and systematically controlled their grafting density and PS chains length. By changing the concentration of diazonium salt, we controlled the grafting density; while by varying the concentration of monomer, we controlled the length of grafting PS chains (Mn=21300-78900 g/mol). TEM results show different surface morphologies of these samples. For the low density sample, the distribution of PS on the grapheme surface is not uniform, however, for high density sample the distribution of PS is rather uniform so that they formed a film on the grapheme surface. DSC results indicate that the restriction effect of graphene nanosheets on grafting PS chains is different. Heat conductivity measure demonstrates different influences of grapheme on the heat conductivity of composites. It was observed that the low grafting density graphene sample exhibited the better heat conduction than the high grafting density sample and furthermore, all functionalized graphene samples reveal better heat conductivities than those unfunctionalized raw graphite and carbon nanotube-filled composites. It is concluded that control of the interface structure is beneficial for optimizing the thermal properties of GN-based nanocomposites.
     3. Graphene nanosheets were organically modified with curing agent molecules (aromatic diamine, MDA), the functionalized graphene nanosheets were then covalently incorporated into the epoxy resin. We demonstrated an approach to in-situ construct hierarchical, flexible interphase structures in epoxy nanocomposites through a local amine rich environment around graphene nanosheets, by which the volume exclusion of grafting chains took effect. With the addition of 0.6 wt% amine-functionalized nanosheets, the resulting composite exhibits significant mechanical improvement,93.8 and 91.5% increases in fracture toughness and flecural strength, respectively. This approach affords a novel design strategy for developing high-performance composites.
     4. We prepared functional superhydrophobic films using a simple yet versatile solution deposition process that involves solubility-driven synergistic self-organization of graphene nanosheets and poly(3-hexylthiophene) (P3HT) chains. SEM and AFM results confirm the presence of the hierarchical surface roughness. The nanoscale roughness is caused by aggregation of P3HT while the micro-scale roughness is constructed by irregular stacking of graphene nanosheets. The resulting composite films are porous, lightweight, environmentally stable, and exhibiting excellent oil-water separation efficiency. They have electrical conductivities of over 6500 S m-1 and specific electromagnetic interference shielding effectiveness four times greater than solid copper. We also reveal that the synergistic self-organization approach presented here may be readily applied to other composite systems (montmorillonite), proving an industrially viable route to the fabrication of functional superhydrophobic films suited to practical applications.
     5. We prepared layered GO/PVA papers by a simple washing-filtration process and these layered papers exhibit excellent mechanical properties. For the paper with thickness of 46 mm, the elongation at break is up to 9.2%, accompanying with a mechanical strength of about 276 MPa. Furthermore, the mechanical properties were further improved after crosslinking. These GO/PVA papers are pH sensitive, which promoted the formation of Ag nanoparticles in the interlayered spacing of layered GO/PVA papers, revealing a strong surface enhanced Raman scattering (SERS) effect.
     6. we proposed a convenient method to modulate the loading and distribution uniformity of metal NPs on GNs by changing the length of polymer chains covalently grafted on GNs. The immobilization of functional groups (carboxyl groups) on polymer chains to metal ions allows the NPs on GNs to grow in a nearly similar kinetics, resulting in a narrow particle size distribution.
引文
[1]F. Liu; P. b. Ming; J. Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension [J]. Physical Review B,2007,76:064120.
    [2]A. K. Geim; K. S. Novoselov. The rise of graphene. [J] Nat. Mater.,2007,6(3): 183-191.
    [3]Y. B. Zhang; Y. W. Tan; H. L. Stormer; et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene.[J] Nature,2005,438(7065): 201-204.
    [4]K. S. Novoselov; D. Jiang. F. Sehedin; et al. Two-dimensional atomic crystals. [J] Proc. Natl. Acad. Sci. USA,2005,102(30):10451-10453.
    [5]S. Ghosh; l. Calizo; D. Teweldebrhan; et al. Extremely high thermal eonduetivity of graphene:ProsPeets for thermalman agement a PPlieations in nanoeleetron ieeireuits. [J] APPI. Phys. Lett.,2008,92(15):151911-151913
    [6]S. J. Park; R. S. Ruoff. Chemical Methods for the Production of Graphenes. [J] Nat. Nanotechnol.,2009,4(4):217-224.
    [7]A. Dato; V. Radmilovic; Z. Lee; et al. Substrate-Free Gas-Phase Synthesis of Graphene Sheets. [J] Nano. Lett.,2008,8(7):2012-2016.
    [8]Y. Zhu; S. Murali; W. Cai; et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications. [J] Adv. Mater.,2010,22(35):3906-3924.
    [9]M. S. Dresselhaus; G. Dresselhaus. Intercalation compounds of graphite. [J] Adv. In Phys.,1981,30(2):139-326.
    [10]B. Z. Jang; A. Zhamu. Processing of nanographene platelets (NGPs) and NGP nanocomposites:a review. [J] J Mater. Sci.,2008,43(15):5092-5101.
    [11]G. Chen; D. Wu; W. Weng; et al. Exfoliation of graphite flake and its nanocomposites. [J] Carbon,2003,41(3):619-625.
    [12]X. Li; G. Zhang; X. Bai; et al. Highly conducting graphene sheets and Langmuir-Blodgett films. [J] Nat. Nanotechnol.,2008,3(9):538-542.
    [13]K. Kalaitzidou; H. Fukushima; L. T. Drzal. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. [J]Carbon, 2007,45(7):1446-1452.
    [14]L. M. Viculis; J. J. Mack; O. M. Mayer; et al. Intercalation and exfoliation routes to graphite nanoplatelets. [J] J. Mater. Chem.,2005,15(9):974-978.
    [15]X. L. Li; G. Y. Zhang; X. D. Bai; et al. Highly conducting graphene sheets andLangmuir-Blodgett films. [J] Nat. Nanotechnol.,2008,3(9):538-542.
    [16]M. Zhang; R. R. Parajuli; D. Mastrogiovanni; et al. Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. [J] Small,2010,6(10): 1100-1007.
    [17]Y. Hernandez; V. Nicolosi; M. Lotya; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. [J] Nat Nanotechnol.,2008,3(9):563-568.
    [18]M. Lotya; Y. Hernandez; P. J. King; et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. [J] J. Am. Chem. Soc.,2009, 131(10):3611-3620.
    [19]J. Lu; J. X.Yang; J. Wang; et al. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. [J] ACS Nano.,2009,3(8):2367-2375.
    [20]D. R. Dreyer; S. J. Park; C. W. Bielawski; et al. The chemistry of graphene oxide. [J] Chem. Soc. Rev.,2010,39(1):228-240.
    [21]D. A. Dikin; S. Stankovich; E. J. Zimney; et al. Preparation and characterization of graphene oxide paper. [J] Nature,2007,448(7152):457-460.
    [22]Z. Li; W. Zhang; Y. Luo; et al. How Graphene Is Cut upon Oxidation? [J] J. Am. Chem. Soc.,2009,131(18):6320-6321.
    [23]V. G. Ruess; F. Vogt. Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Uber den Ort der aktiven Eigenschaften am Kohlenstoffkristall. [J] Monatsh. Chem., 1948,78(3-4):222-242.
    [24]H. C. Schniepp; J. L. Li; M. J. McAllister; et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. [J] J. Phys.Chem. B.,2006,110(17): 8535-8539.
    [25]S. Stankovieh; D.A. Dikin; G. H. B. Domlnett; et al. Graphene-based composite materials. [J] Nature,2006,42(7100):282-286.
    [26]L. Dan. Processable aqueous dispersions of graphene nanosheets. [J] Nat Nanotechnol,2008,3(2):101-105.
    [27]S. Stankovich; D. A. Dikin; R. D. Piner; et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon,2007, 45(7):1558-1565.
    [28]S. Brunauer; P. H. Emmett; E. Teller. Adsorption of Gases in Multimolecular Layers. [J] J. Am. Chem. Soc.,1938,60(2):309-319.
    [29]Hummers and R. E. Offeman, Preparation of Graphitic Oxide. [J] J. Am. Chem.Soc.,1958,80(6):1339-1339.
    [30]S. Gilje; S. Han; M. Wang; et al. A Chemical Route to Graphene for Device Applications. [J] Nano Lett.,2007,7(11):3394-3398.
    [31]N. I. Kovtyukhova; P. J. Ollivier; B. R. Martin; et al. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. [J] Chem. Mater.,1999, 11(3):771-778.
    [32]K. R. Koch; P. F. Krause. Oxidation by Mn207:An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. [J] J. Chem. Ed.,1982, 59(11):973-974.
    [33]H. J. Shin; K. K. Sim; A. Benayad; et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. [J] Adv. Funct. Mater.,2009,19(12):1987-1992.
    [34]S. J. Kanh; C. Kocabas; T. Ozel; et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. [J] Nat. Nanotechnol.,2007,2(4):230-236.
    [35]G. Wang; J. Yang; J. Park; et al. Facile Synthesis and Characterization of Graphene Nanosheets. [J] J. Phys. Chem. C,2008,112(22):8192-8195.
    [36]Z. S. Wu; W. C. Ren; L. B. Gao; et al. Synthesis of high-quality graphene with a pre-determined number of layers. [J] Carbon,2009,47(2):493-499.
    [37]X. Fan; W. Peng; Y. Li; et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. [J] Adv. Mater.,2008, 20(23):4490-4493.
    [38]H. P. Boehm; A. Clauss; G. O. Fischer; et al. Das Adsorptionsverhalten sehr dunner Kohlenstoff-Folien. [J] Z. Anorg. Allg. Chem.,1962,316(3-4):119-127.
    [39]W. Gao; L. B. Alemany; L. Ci; et al. New insights into the structure and reduction of graphite oxide. [J] Nat. Chem.,2009,1(5):403-408.
    [40]M. J. McAllister; J. L. Li; D. H. Adamson; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. [J] Chem. Mater.,2007, 19(18):4396-4404.
    [41]K. N. Kudin; B. Ozbas; H. C. Schniepp; et al. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. [J] Nano. Lett.,2008,8(1):36-41.
    [42]H. L. Wang. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. [J] J. Am. Chem. Soc.,2009,131(29):9910-9991.
    [43]C. Nethravathi; M. Rajamathi. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. [J] carbon,2008, 46(14):1994-1998.
    [44]T. Ramanathan; A. A. Abdala; S. Stankovich; et al. Functionalized graphene sheets for polymer nanocomposites. [J] Nat. Nanotechnol.,2008,3(6):27-331.
    [45]S. Ansari; A. Kelarakis; L. Estevez; et al.Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets. [J] Small,2010, 6(2):205-209.
    [46]E. Tkalya; M. Ghislandi A. Alekseev; et al.Latex-based concept for the preparation of graphene-based polymer nanocomposites. [J] J. Mater. Chem.,2010, 20(15):3035-3039.
    [47]H. Kim; Y. Miura; C. W. Macosko. Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. [J] Chem. Mater.,2010,22(11): 3441-3450.
    [48]B. Das; K. E. Prasad; U. Ramamurty; et al. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. [J] Nanotechnology,2009, 20(12):125701-125705.
    [49]F. B. Bujans; S. Cerveny; R. Verdejo; et al. Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation [J] Carbon,2010, 48(4):1079-1087.
    [50]M. Fang; K. G. Wang; H. B. Lu; et al. layer graphenenanosheets with controlled grafting of polymer chains. [J] J. Mater. Chem.,2010,20(10):1982-1992.
    [51]S. H. Lee; D. R. Dreyer. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. [J] Macromol. Rapid Commun.,2010,31(3):281-288.
    [52]M. Fang; K. G. Wang; H. B. Lu; et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. [J] J. Mater.Chem., 2009,19(38):7098-7105.
    [53]S. R. Wang; M. Tambraparni; J. J. Qiu; et al. Thermal Expansion of Graphene Composites. [J] Macromolecules,2009,42(14):5251-5255.
    [54]M. A. Rafiee; J. Rafiee; Z. Wang; et al. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. [J] ACS Nano,2009,3(12):3884-3890.
    [55]R. Verdejo; F. Barroso-Bujans; M. A. Rodriguez-Perez; et al. Functionalized graphene sheet filled silicone foam nanocomposites. [J] J. Mater. Chem.,2008, 18(19):2221-2226.
    [56]R. Verdejo; F. J. Tapiador; L. Helfen; et al. Fluid dynamics of evolving foams. [J] Phys. Chem. Chem. Phys.,2009,11(46):10860-10866.
    [57]P. Steurer; R. Wissert; R. Thomann; et al. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxid. [J] Rapid Commun.,2009,30(4-5):316-327.
    [58]H. Kim; C. W. Macosko. Processing-property relationships of polycarbonate/graphene composites. [J] Polymer,2009,50(15):3797-3809.
    [59]J. Q. Liu; L. Tao; W. R. Yang; et al. Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Graphene-Polymer Nanocomposites. [J] Langmuir,2010, 26(12):10068-10075.
    [60]H. T. Hu; X. B. Wang; J. C. Wang; et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. [J] Chem Phys. Lett.,2010,484(4-6):247-253.
    [61]G. Zheming; Z. Ling; L. C. Zhong. Emulsion polymerization:A new approach to prepare graphite oxide coated with polyaniline. [J] J Macromol Sci Part B Phys,2009, 48(2):226-237.
    [62]Y. Cao; J. Feng; P. Wu.Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. [J] Carbon,2010,48(13):3834-3839.
    [63]T. Wei; G. L. Luo; Z. J. Fan; et al. Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. [J] Carbon,2009,47(9): 2296-2299.
    [64]E. Y. Choi; T. H. Han. Noncovalent functionalization of graphene with end-functional polymers. [J] J. Mater. Chem.,2010,20(10):1907-1912.
    [65]H. Chen; M. B.Muller; K. J. Gilmore; et al. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. [J] Adv. Mater.,2008,20(18): 3557-3561.
    [66]H. B. Zhang; W. G.Zheng; Q. Yan; et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. [J] Polymer, 2010,51(5):1191-1196.
    [67]Y. A. Balogun; R.C. Buchanan. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs). [J] Compos. Sci. Technol.,2010,70(6):892-900.
    [68]V. I. Roldughin; V. V. Vysotskii. Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. [J] Prog. Org. Coat.,2000,39(2-4): 81-100.
    [69]D. Toker; D. Azulay; N. Shimoni; et al.Tunneling and percolation in metal-insulator composite materials. [J] Phys Rev B Condens Matter Mater Phys, 2003,68(4):41403-414036.
    [70]S. Ansari; E. P. Giannelis. Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. [J] J Polym. Sci. Part B Polym Phys,2009,47(9): 888-897.
    [71]W. Bauhofer; J.Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. [J] Compos. Sci. Technol.,2009,69(10): 1486-1498.
    [72]C. A. Martin; J. K. W. Sandler; M. S. P. Shaffer; et al. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. [J] Compos. Sci. Technol., 2004,64(15):2309-2316.
    [73]J. K. W. Sandler; J. E. Kirk; I. A. Kinloch. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. [J] Polymer,2003,44(19): 5893-5899.
    [74]D. W. Schaefer; R. S. Justice. How Nano Are Nanocomposites? [J] Macromolecules,2007,40(24):8501-8517.
    [75]J. Z. Kovacs; B. S.Velagala; K. Schulte; et al. Two percolation thresholds in carbon nanotube epoxy composites. [J] Compos. Sci. Technol.,2007,67(5):922-928.
    [76]H. Pang; T. Chen; G. Zhang; et al. An electrically conducting polymer/graphene composite with a very low percolation threshold. [J] Mater. Lett.,2010,64(20): 2226-2229.
    [77]Y. Mitra; G. R. James. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites. [J] ACS Nano.,2010,4 (12):7211-7220.
    [78]R. Haggenmueller; H. H. Gommans; A. G.Rinzler; et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. [J] Chem. Phys. Lett., 2000,330(3-4):219-225.
    [79]H. Kim; C. W. Macosko. Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites. [J] Macromolecules,2008,41(9):3317-3327.
    [80]J. Hicks; A. Behnam; A. Ural. A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites. [J] Appl. Phys. Lett.,2009, 95(21):213103-213105.
    [81]J. Li; J. K. Kim. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. [J] Compos. Sci. Technol., 2007,67(10):2114-2120.
    [82]G. Eda; M. Chhowalla. Graphene-based Composite Thin Films for Electronics. [J] Nano Lett.,2009,9(2):814-818.
    [83]Y. B. Yi; E. Tawerghi. Geometric percolation thresholds of interpenetrating plates in three-dimensional space. [J] Phys Rev E Stat Nonlin Soft Matter Phys.,2009,79(4): 041134.
    [84]H. A. Pang; Y. C. Zhang; T. Chen; et al. Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. [J] Appl. Phys. Lett.,2010,96(25):25190-25192.
    [85]J. J. Liang; Y. Wang; Y. Huang; et al. Electromagnetic interference shielding of graphene/epoxy composites. [J] Carbon,2009,47(3):922-925.
    [86]F. He, S. Lau; H. L. Chan; J. T. Fan. High Dielectric Permittivity and Low Percolation Threshold in Nanocomposites Based on Poly(vinylidene fluoride) and Exfoliated Graphite Nanoplates. [J] Adv. Mater.,2009,21(6):710-715.
    [87]A. A. Balandin; S.Ghosh; W. Bao; et al. SuPerior Thermal Conduetivity of Single-Layer GraPhene. [J] NanoLett.,2008,8(3):902-907.
    [88]A. Yu; P. Ramesh; X. Sun; et al. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites. [J] Adv. Mater., 2008,20(24):4740-4744.
    [89]W. Lin; R. Zhang; C. P. Wong. Modeling of Thermal Conductivity of Graphite Nanosheet Composites. [J] J. Electron. Mater.,2010,39(3):268-272.
    [90]L. M. Veca; M. J. Meziani; W. Wang; et al.Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. [J] Adv. Mater.,2009,21(20): 2088-2092.
    [91]S. Ghose; K. A.Watson; D. C. Working; et al. Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. [J] Compos. Sci. Technol.,2008,68(7-8): 1843-1853.
    [92]H. Zhong; J. R. Lukes. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. [J] Phys. Rev. B., 2006,74(12):125403-125412.
    [93]G. Zhang; Y.Xia; H.Wang; et al. A Percolation Model of Thermal Conductivity for Filled Polymer Composites. [J] J. Compos. Mater.,2010,44(8):963-970.
    [94]S. Ganguli; A. K.Roy; D. P. Anderson. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. [J] Carbon,2008, 46(5):806-817.
    [95]M. Moniruzzaman; K. I.Winey. Polymer Nanocomposites Containing Carbon Nanotubes. [J] Macromolecules,2006,39(16):5194-5205.
    [96]C. G. Lee; X. D.Wei; J. Kysar; et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. [J] Science,2008,321(5887):385-388.
    [97]J. T. Paci; T. Belytschko; G. C. Schatz. Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide. [J] J. Phys. Chem. C.2007,111(49):18099-18111.
    [98]J. W. Suk; R. D. Piner; J. An; et al. Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. [J] Nano Lett.,2010,10(11):4381-4386.
    [99]C. G. Navarro; M. Burghard; K. Kern. Elastic Properties of Chemically Derived Single Graphene Sheets. [J] Nano. Lett.,2008,8(7):2045-2049.
    [100]T. D. Fornes; D. R. Paul. Modeling properties of nylon 6/clay nanocomposites using composite theories. [J] Polymer,2003,44(17):4993-5013.
    [101]X. Hao; Q. H. Zhang; D. J. Chen; et al. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. [J] Macromolecules,2010,43(5): 2357-2363.
    [102]K.Wakabayashi; C. Pierre; D. A Dikin; et al. [J] Macromolecules,2008, 41():1905-1908.
    [103]H. P. Boehm; A. Clauss; G. Fischer; et al. Proceedings of the fifth conference on carbon. [J] Solid-State Electronics,1963,6(6):686.
    [104]T. Ramanathan; A.A. Abdala; S. Stankovich; et al. Functionalized graphene sheets for polymer nanocomposites. [J] Nat Nanotechnol,2008,3(6):327-331.
    [105]M. A. Rafiee; J. Rafiee; I. Srivastava; et al. Fracture and Fatigue in Graphene Nanocomposites. [J] Small,2010,6(2):179-183.
    [106]M. Alexandre; P. Dubois. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. [J] Mater. Sci.Eng. R. Rep.,2000, 28(1-2):1-63.
    [107]Vaia RA, Maguire JF. Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers. [J] Chem. Mater.,2007,19(11): 2736-2751.
    [108]M. Kluppel. The role of disorder in filler reinforcement of elastomers on various length scales. [J] Advances in Polymer Science,2003,164:1-86.
    [109]D. R Paul; L. M. Robeson. Polymer nanotechnology:Nanocomposites. [J] Polymer,2008,49(15):3187-3204.
    [110]B. Pukanszky; E. Fekete. Adhesion and surface modification. Advances in Polymer Science,1999,139:109-153.
    [111]C. Lv; Q. Xue; D. Xia; et al.Effect of Chemisorption on the Interfacial Bonding Characteristics of Graphene-Polymer Composites. [J] J. Phys. Chem. C.,2010, 114(14):6588-6594.
    [112]H. D.Wagner; R. A. Vaia.Nanocomposites:issues at the interface. [J] Mater Today,2004,7(11):38-42.
    [113]L. S. Schadler; S. C. Giannaris; P. M. Ajayan.Load transfer in carbon nanotube epoxy composites. [J] Appl. Phys. Lett.,1998,73(26):3842-3844.
    [114]L. Gong; I. A. Kinloch; R. J.Young; et al. Novoselov KS. Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. [J] Adv. Mater.,2010, 22(24):2694-2697.
    [115]M. Cai; A. J. Glover; T. J. Wallin; et al. Direct Measurement of the Interfacial Attractions between Functionalized Graphene and Polymers in Nanocomposites. [J] AIR Conf. Proc.,2010,1255(1):95-97.
    [116]S. J. V. Frankland; A. Caglar; D. W. Brenner; et al. Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces. [J] J. Phys. Chem. B.,2002,106(12):3046-3048.
    [117]X. M. Yang; Y. F. Tu; L. A. Li; Shang SM, et al. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. [J] ACS. Appl. Mater. Interfaces.,2010, 2(6):1707-1713.
    [118]L. Iang; X. P.Shen; J. L.Wu; et al. Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. [J] J. Appl. Polym. Sci.,2010,118(1): 275-279.
    [119]J. J. Liang; Y. Huang; L. Zhang; et al. Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. [J] Adv. Funct. Mater.,2009,19(14):2297-2302.
    [120]D. Y. Cai; M. Song. A simple route to enhance the interface between graphite oxide nanoplatelets and a semi-crystalline polymer for stress transfer. [J] Nanotechnology,2009,20(31):315708.
    [121]Z. Xu; C. Gao. In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. [J] Macromolecules,2010,43(16):6716-6723.
    [122]S. G. Miller; J. L. Bauer; M. J. Maryanski; et al. Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. [J] Compos. Sci. Technol.,2010,70(7):1120-1125.
    [123]Y. R. Lee; A. V. Raghu; H. M. Jeong; et al. Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method. [J] Macromol. Chem. Phys.,2009,210(15):1247-1254.
    [124]D. Y. Cai; K. Yusoh; M. Song. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. [J] Nanotechnology,2009,20(8): 085712.
    [125]D. A. Nguyen; Y. R. Lee; A. V. Raghu; et al. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet.[J] Polym Int.,2009,58(4):412-417.
    [126]A.V. Raghu; Y. R. Lee; H. M. Jeong; et al. Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. [J] Macromol. Chem. Phys.,2008,209(24):2487-2493.
    [127]R. K. Layek; S. Samanta; D. P. Chatterjee; et al. [J] Polymer,2010,51(24): 5846-5856.
    [128]G. Goncalves; P. A. A. P. Marques; A. B. Timmons; et al. Graphene oxide modified with PMMAviaATRP as a reinforcement filler. [J] J. Mater. Chem.,2010, 20(44):9927-9934.
    [129]K. P. Pramoda; H. Hussain; H. M. Koh; et al. Covalent bonded polymer-graphene nanocomposites. [J] J. Polym. Sci. Part. A. Polym. Chem.,2010, 48(19):4262-4267.
    [130]O. C. Compton; S. Kim; C. Pierre; et al. Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers. [J] Adv Mater.,2010,22(42): 4759-4763.
    [131]S. T. Sun; Y. W. Cao; J. C. Feng; et al. Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. [J] J. Mater. Chem., 2010,20(27):5605-5607.
    [132]W. Hong; Y. Xu; G. Lu; et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. [J] Electrochem. Comm., 2008,10(10):1555-1558.
    [133]Z. F. Liu; Q. Liu; Y. Huang; et al. Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene. [J] Adv. Mater.,2008,20(20):3924-3930.
    [134]H. Bai; Y. X. Xu; L. Zhao; et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. [J] Chem. Commun.,2009,13:1667-1669.
    [135]J. Li; S. Guo; Y. Zhai; et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. [J] Anal. Chim. Acta.,2009,649(2): 196-201.
    [136]G. L. Li; G. Liu; M. Li; et al. Organo-and Water-Dispersible Graphene Oxide-Polymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. [J] J. Phys. Chem. C.,2010,114(29):12742-12478.
    [137]O. C. Compton, S. B. T. Nguyen. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials. [J] Small,2010,6(6):711-723.
    [138]N. G. Spitsina; A. S. Lobach; M. G. Kaplunov. Polymer/nanocarbon composite materials for photonics. [J] High. Energy. Chem.,2009,43(7):552-556.
    [139]C. P. Tien; H. S. Teng. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. [J] J Power Sources.,2010,195(8): 2414-2418.
    [140]Q. Wu; Y. X. Xu; Z. Y. Yao; et al. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. [J] ACS.Nano.,2010,4(4): 1963-1970.
    [141]D.W. Wang; F. Li; J.Zhao; et al. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. [J] ACS. Nano.,2009,3(7):1745-1752.
    [142]H.Wang; Q. Hao; X.Yang; et al.Graphene oxide doped polyaniline for supercapacitors. [J] Electrochem Commun,2009,11(6):1158-1161.
    [143]J. Yan; T. Wei; B. Shao; et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. [J] Carbon,2010,48(2):487-493.
    [144]A. V. Murugan; T. Muraliganth; A. Manthiram. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. [J] Chem Mater 2009,21(21):5004-5006.
    [145]J. Stejskal; R. G. Gilbert. Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report). [J] Pure and Applied Chemistry,2002,74(5): 857-867.
    [146]W. L. Zhang; B. J. Park; H. J. Choi. Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. [J] Chem. Commun.,2010,46(30): 5596-5598.
    [147]S. Higashkia; K. Kimura; Y. Matsuo; et al. Effect of specific surface area and silver content on bacterial adsorption onto ACF(Ag). [J] Carbon,1999,37(2): 351-358.
    [148]H.Wang; Q. Hao; X. Yang; et al. Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. [J] ACS Appl Mater Interfaces,2010,2(3):821-828.
    [149]X. Zhou; T. Wu; B. Hu; et al. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. [J] Chem. Commun.,2010,46(21): 3663-3665.
    [1]S. Park; R. S. Ruoff. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. [J] Nat. Nanotechnol.,2009,4(4):217-224.
    [2]D. Li; R. B. Kaner. Graphene-Based Materials. [J] Science,2008,320(5880): 1170-1771.
    [3]A. K. Geim; K.S. Novoselov.The rise of graphene. [J] Nat. Mater.,2007,6(3): 183-191.
    [4]C. G. Lee; X. D.Wei; Kysar, J.; et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. [J] Science,2008,321(5887):385-388.
    [5]A. K. Geim. Graphene:Status and Prospects. [J] Science,2009,324(5934): 1530-1534.
    [6]X. R. Wang; M. Scott; H. J. Dai. Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. [J] J. Am. Chem. Soe.,2008,130(26): 8152-8153.
    [7]X. Wang; L. Zhi; ullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. [J] Nano. Lett.,2007,8(1):323-327.
    [8]T. J. Robinson; M. Zalalutdinov; J. W. Baldwin, et al. Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices. [J] Nano.Lett.,2008, 8(10):3441-3445.
    [9]T. J. Robinson; F. K. Perkins, E. S. Snow, et al. Reduced Graphene Oxide Molecular Sensor. [J] Nano. Lett.,2008,8(10):3137-3140.
    [10]E. J Yoo; J. Kim; E. Hosono; et al. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. [J] Nano. Letters, 2008,8(8):2277-2282.
    [11]P. K. Ang; W. Chen; K. P. Loh. Solution-Gated Epitaxial Graphene as pH Sensor. [J] J.Am.Chem.Soc.,2008,130(44):14392-14393.
    [12]J. F. Dayen; A. Mahmood; D. S. Golubev; et al. Side-gated transport in FIB-fabricated multilayered graphene nanoribbons. [J] Small,2008, (4):716-720.
    [13]Y.C. Si; E.T. Samulski. Exfoliated graphene separated by platinum nanoparticles. [J] Chem. Mater.,2008,20(21):6792-6797.
    [14]Y. X. Xu; H. Bai; G. W. Lu; Shi, G. Q. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. [J] J.Am.Chem.Soc., 2008,30(18):5856-5857.
    [15]P. Blake; P. D. Brimicombe; K.S. Novoselov. Graphene-Based Liquid Crystal Device. [J] Nano. Lett.,2008,8(6):1704-1708.
    [16]R. Muszynski; B. Seger; P. Kamat. Decorating Graphene Sheets with Gold Nanoparticles. [J] J. Phys. Chem.,2008,112(14):5263-5266.
    [17]S. Watcharotone; D. A. Dikin,(?); S. Ruoff. Graphene-Silica Composite Thin Films as Transparent Conductors. [J] Nano. Lett.,2007,7(7):1888-1892.
    [18]S. Stankovieh; D.A. Dikin; G. H. B. Domlnett; et al. Graphene-based composite materials. [J] Nature,2006,42(7):282-286.
    [19]Y. Y. Liang; D. Q. Wu; X. L. Feng; et al. Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres. [J] Adv. Mater.,2009,21(1):1-5.
    [20]S. Stankovich; R. D. Piner; X. Q. Chen; et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). [J] J. Mater. Chem.,2006,16(2):155-158.
    [21]S. Stankovich; R. D. Piner; S. T. Nguyen; et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. [J] Carbon,2006,44(15): 3342-3347.
    [22]Y. F. Xu; Z. B. Liu; X. L. Zhang; et al. A Graphene Hybrid Material Covalently Functionalized with Porphyrin:Synthesis and Optical Limiting Property. [J] J.Adv. Mater.,2009,21(12):1275-1279.
    [23]G. Mayer. Rigid Biological Systems as Models for Synthetic Composites. [J] Science,2005,310(5751):1144-1147.
    [24]A. C. Balazs, T. Emrick, T. P. Russell. Nanoparticle Polymer Composites:Where Two Small Worlds Meet. [J] Science,2006,314(5802):1107-1110.
    [25]L. S. Schadler; S. K. Kumar; B. C. Benicewicz; et al. Designed Interfaces in Polymer Nanocomposites:A Fundamental Viewpoint. [J] MRS Bull.,2007,32 (4): 335-340.
    [26]W. S.Hummers; R E Offeman. Preparation of graphite oxide. [J] J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [27]S. Gilje; S. Han; M. Wang; et al. A Chemical Route to Graphene for Device Applications. [J] Nano. Lett.,2007,7(11):3394-3398.
    [28]N. I. Kovtyukhova; P. J. Ollivier; B. R. Martin; et al. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. [J] Chem. Mater.,1999,11(3):771-778.
    [29]Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixture. [J] Nat. Mater.,2009,8(2):139-143.
    [30]Y. J. Min; M. Akbulut; K. Kristiansen; et al. [J] Nat.Mater.,2008,7(7):527-538.
    [31]J. R. Lomeda; C. D. Doyle; D. V. Kosynkin; et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. [J] J. Am. Chem. Soc.,2008,130(48),16201-16206.
    [32]K. N. Kudin; B. Ozbas; H. C. Schniepp; et al. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. [J] Nano Lett.,2008,8(1):36-41.
    [33]H. Kong; C. Gao; D. Y. Yan. Functionalization of Multi-walled Carbon Nanotubes by Atom Transfer Radical Polymerization (ATRP) and Defunctionalization of the Products. [J] Macromolecules,2004,37(11):4022-4230.
    [34]G. M. Chen; S. H. Liu; S. J. Chen; et al. FTIR Spectra, thermal properties and dispersibility of apolystyrene/montmorillonite nanocomposites. [J] Macromol. Chem. Phys.2001,202(7):1189-1193.
    [35]C. Y. Liang; S. Krimm. Infrared spectra of high polymers.Ⅵ. Polystyrene. [J] J. Polym. Sci.,1958,27(115):241-254.
    [36]S. Stankovich; D. A. Dikin; R. D. Piner; et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon,2007, 45(7):1558-1565.
    [37]M. Husseman;, E. E. Malmstrom; M. McNamara; et al. Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization Techniques. [J] Macromolecules,1999,32(5):1424-1431.
    [38]J. Pyun; S. J. Jia; T. Kowalewski; et al. Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles:Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. [J] Macromolecules,2003,36(14):5094-5104.
    [39]H. B. Lu; S. Nutt. Restricted Relaxation in Polymer Nanocomposites near the Glass Transition. [J] Macromolecules,2003,36 (11):4010-4016.
    [40]H. B. Lu; S. Nutt. [J] Macromol. Chem. Phys.,2003,204(15):1832-1841.
    [41]L. An; Y. Z. Pan; X. W. Shen; et al. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. [J] J. Mater. Chem.,2008,18(41),4928-4941.
    [42]Y. Z. Pan; Y. Xu; Y. Song; L. Xie; L. An; H. B. Lu et al. Hybrid Network Structure and Mechanical Properties of Rod-like Silicate/Cyanate Est er Nanocomposites. [J] Macromolecules,2008,41(23):9245-9258.
    [43]T. Ramanathan; A. A. Abdala; S. Stankovich; et al. Functionalized graphene sheets for polymer nanocomposites. [J] Nat. Nanotechnol.,2008,3(6):327-331;
    [44]Y. C. Si; E. T. Samulski. Synthesis of Water Soluble Graphene.[J] Nano Lett., 2008,8(6):1679-1682.
    [45]H. J. Oh; P. F. Green. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixture. [J] Nat. Mater.,2009,8(2):139-143.
    [46]D. A. Dikin; S. Stankovich; E. J. Zimney; et al. Preparation and characterization of graphene oxide paper. [J] Nature,2007,448(7152):457-460.
    [47]B. Debelak; K. Lafdi.Use of exfoliated graphite filler to enhance polymer physical properties. [J] Carbon,2007,45(9):1727-1734;
    [48]T. Ramanathan; S. Stankovich; D. A. Dikin; et al. Graphitic nanofillers in PMMA nanocomposites-An investigation of particle size and dispersion and their influence on nanocomposite properties. [J] J. Polym. Sci., Part B:Polym. Phys.,2007,45(15): 2097-2112.
    [49]P. Steurer; R. Wissert; R. Thomann; et al. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxid. [J] Rapid Commun.,2009,30(4-5):316-327
    [1]S. P. Pang; H. N. Tsao; X. L. Feng; et al. Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors. [J] Adv. Mater.,2009,21(34):3488-3491.
    [2]G. C. Liang; N. Neophytou; M. S. Lundstro; et al. E. Nikonov,Contact Effects in Graphene Nanoribbon Transistors. [J] Nano. Lett.,2008,8(7):1819-1824.
    [3]Q. Su; S. P. Pang; V. Alijani; et al. Composites of Graphene with Large Aromatic Molecules. [J] Adv. Mater.,2009,21(31):3191-3195.
    [4]X. Wang; L. J. Zhi; N. Tsao; et al. Transparent Carbon Films as Electrodes in Organic Solar Cells. [J] Angew. Chem., Int. Ed.,2008,47(16):2990-2992.
    [5]J. Atalaya; A. Isacsson; J. M. Kinaret. Continuum Elastic Modeling of Graphene Resonators. [J] Nano Lett.,2008,8(12):4196-4200.
    [6]Y. Y. Liang; D. Q. Wu;X. L. Feng; et al. Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions. [J] Adv. Mater.,2009,21(17):1679-683.
    [7]M. D. Stoller; S. Park;Y. W. Zhu; et al. Graphene-Based Ultracapacitors. [J] Nano. Lett.,2008,8(10):3498-3502.
    [8]J. S. Wu; W. Pisula; K. Mullen. Graphene Molecules as Potential Material for Electronics. [J] Chem. Rev.,2007,107(3):718-747.
    [9]J. Sakamoto; J. van Heijst; O. Lukin; et al. Two-Dimensional Polymers:Just a Dream of Synthetic Chemists? [J] Angew. Chem., Int. Ed.,2009,48(6):1030-1069.
    [10]V. C. Tung; M. J. Allen; Y. Yang; et al. High-throughput solution processing of large-scale graphene. [J] Nat. Nanotechnol.,2009,4(1):25-29.
    [11]M. Choucair; P. Thordarson; J. A. Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication. [J] Nat. Nanotechnol.,2009,4(1): 30-33.
    [12]X. L. Li; G. Y. Zhang; X. D. Bai; et al. Highly conducting graphene sheets andLangmuir-Blodgett films. [J] Nat. Nanotechnol.,2008,3(9):538-542.
    [13]S. Niyog; E. Bekyarova; M. E. Itkis; et al. Solution Properties of Graphite and Graphene. [J] J. Am. Chem. Soc.,2006,128(24):7720-7721.
    [14]Y. C. Si; E. T. Samulski. Synthesis of Water Soluble Graphene. [J] Nano. Lett., 2008,8(6):1679-1682.
    [15]L. J. Cote; F. Kim; J. X. Huang. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers. [J] J. Am. Chem. Soc.,2009,131(3):1043-1049.
    [16]M. Lotya; Y. Hernandez; P. J. King; et al. Duesberg and J. N. Coleman, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. [J] J. Am. Chem. Soc.,2009,131(10):3611-3620.
    [17]D. W. Boukhvalov; M. I. Katsnelson. Chemical Functionalization of Graphene with Defects. [J] Nano Lett.,2008,8(12):4373-4379.
    [18]D. Konatham; A. Striolo. Molecular Design of Stable Graphene Nanosheets Dispersions. [J] Nano. Lett.,2008,8(12):4630-4641.
    [19]Y. C. Si; E. T. Samulski. Synthesis of Water Soluble Graphene. [J] Nano. Lett., 2008,8(6):1679-1682.
    [20]H. J. Oh; P. F. Green. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. [J] Nat. Mater.,2009,8(2):139-143.
    [21]Y. X. Xu; H. Bai; G. W. Lu; et al. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. [J] J. Am. Chem. Soc., 2008,130(18):5856-5857.
    [22]H. Bai; Y. X. Xu; L. Zhao; et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. [J] Chem. Commun.,2009,13:1667-1669.
    [23]Z. Liu; J. T. Robinson;X. M. Sun; et al.PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. [J] J. Am. Chem. Soc.,2008,130(33): 10876-10877.
    [24]S. Stankovich; R. D. Piner; X. Q. Chen; et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate).[J] J. Mater. Chem.,2006,16(2):155-158.
    [25]F. M. Koehler; N. A. Luechinger; D. Ziegler; et al. Permanent Pattern-Resolved Adjustment of the Surface Potential of Graphene-Like Carbon through Chemical Functionalization. [J] Angew. Chem. Int. Ed.,2008,48(1):224-227.
    [26]J. F. Shen;Y. H. Hu; C. Li; et al. Synthesis of Amphiphilic Graphene Nanoplatelets. [J] Small,2009,5(1):82-85.
    [27]S. Stankovich; R. D. Piner;S. T. Nguyen; et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. [J] Carbon,2006,44(15): 3342-3347.
    [28]G. Eda; M. Chhowalla. Graphene-based Composite Thin Films for Electronics. [J] Nano. Lett.,2009,9(2):814-818.
    [29]J. R. Lomeda; C. D. Doyle; D. V. Kosynkin; et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. [J] J. Am. Chem. Soc.,2008,130(48):16201-16206.
    [30]E. Bekyarova; M. E. Itkis; P. Ramesh; et al. Chemical Modification of Epitaxial Graphene:Spontaneous Grafting of Aryl Groups. [J] J. Am. Chem. Soc.,2009,131(4): 1336-1337.
    [31]Y. F. Xu; Z. B. Liu; X. L. Zhang; et al. A Graphene Hybrid Material Covalently Functionalized with Porphyrin:Synthesis and Optical Limiting Property. [J] Adv. Mater.,2009,21(12):1275-1279.
    [34]G. Mayer. Rigid Biological Systems as Models for Synthetic Composites. [J] Science,2005,310(5751):1144-1147.
    [35]A. C. Balazs; T. Emrick; T. P. Russell. Nanoparticle Polymer Composites:Where Two Small Worlds Meet. [J] Science,2006,314(5802):1107-1110.
    [36]L. S. Schadler; S. K. Kumar; B. C. Benicewicz; et al. Designed Interfaces in Polymer Nanocomposites:A Fundamental Viewpoint. [J] MRS Bull.,2007,32 (4): 335-340.
    [37]J. I. Paredes; S. Villar-Rodil; A. Martinez-Alonso. Graphene Oxide Dispersions in Organic Solvents. [J] Langmuir,2008,24(19):10560-10564.
    [38]S. J. Park; J. H. An; I. H. Jung; et al. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. [J] Nano Lett.,2009,9(4): 1593-1597.
    [39]Z. S. Wu; W. C. Ren; L. B. Gao; et al. Synthesis of high-quality graphene with a pre-determined number of layers.[J] Carbon,2009,47(2):493-499.
    [40]A. K. Geim; K. S. Novoselov. The rise of graphene. [J] Nat. Mater.,2007,6(3): 183-191.
    [41]A. K. Geim. Graphene:Status and Prospects. [J] Science,2009,324(5394): 1530-1534.
    [42]S. J. Park; R. S. Ruoff. Chemical Methods for the Production of Graphenes. [J] Nat. Nanotechnol.,2009,4(4):217-224.
    [43]Hummers and R. E. Offeman, Preparation of Graphitic Oxide. [J] J. Am. Chem.Soc.,1958,80(6):1339-1339.
    [44]S. Gilje; S. Han; M. Wang; et al. A Chemical Route to Graphene for Device Applications. [J] Nano Lett.,2007,7(11):3394-3398.
    [45]N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E.V. Buzaneva and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. [J] Chem. Mater., 1999, 11(3):771-778.
    [46]M. A. Pimenta; G. Dresselhaus; M. S. Dresselhaus; et al. Studying disorder in graphite-based systems by Raman spectroscopy. [J] Phys. Chem. Chem. Phys.,2007, 9(11):1276-1291.
    [47]L. Cancado; K. Takai;T. Enoki; et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. [J] Appl. Phys. Lett., 2006,88(16):163106-163103.
    [48]A. Bansal; H. C. Yang; C. Z. Li; et al. Quantitative Equivalence Between Polymer Nanocomposites and Thin Polymer Films. [J] Nat. Mater.,2005,4(9): 693-698.
    [49]P. Rittigstein; R. D. Priestley; L. J. Broadbelt; et al. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. [J] Nat. Mater.,2007,6(4):278-282.
    [50]S. C. Warren; F. J. Disalvo; U. Wiesner. anoparticle-tuned assembly and disassembly of mesostructured silica hybrids. [J] Nat. Mater.,2007,6(3):156-161.
    [51]M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. V. Horn, Z. B. Guan; G. H. Chen; R. S. Krishnan. General Strategies for Nanoparticle Dispersion. [J] Science,2006,311(5768):1740-1743.
    [52]N. V. Tsarevsky; K. Matyjaszewski. "Green" Atom Transfer Radical Polymerization:From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials.[J] Chem. Rev.,2007,107(6): 2270-2299.
    [53]C. A. Dyke; J. M. Tour. Solvent-Free Functionalization of Carbon Nanotubes. [J] J. Am. Chem. Soc.,2003,125(5):1156-1157.
    [54]N. Nair; W. J. Kim; M. L. Usrey; et al. A Structure-Reactivity Relationship for Single Walled Carbon Nanotubes Reacting with 4-Hydroxybenzene Diazonium Salt. [J] J. Am. Chem. Soc.,2007,129(13):3946-3954.
    [55]S. Stankovich; D. A. Dikin; R. D. Piner; et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon,2007, 45(7):1558-1565.
    [56]L. Xie; F. Xu; F. Qiu; et al. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. [J] Macromolecules,2007,40(9):3296-3305.
    [57]Y. S. Yu; A. Eisenberg. Control of Morphology Through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers. [J] J. Am. Chem. Soc.,1997,119(35):8383-8384.
    [58]D. Li; R. B. Kaner. Shape and Aggregation Control of Nanoparticles:Not Shaken, Not Stirred. [J] J. Am. Chem. Soc.,2006,128(3):968-975.
    [59]P. J. Costanzo; N. Dan; K. S. Lancaster; et al. Effect of changing polymer chain length on the target-mediated agglutination of polymer-grafted nanoparticles. [J] Macromolecules,2008,41(4):1570-1576.
    [60]P. G. Debenedetti; F. H. Stillinger. Review article Supercooled liquids and the glass transition. [J] Nature,2001,410(6825):259-267.
    [61]C. J. Ellison; J. M. Torkelson. The distribution of glass-transition temperatures in nanoscopically confined glass formers. [J] Nat. Mater.,2003,2(10):695-670.
    [62]H. B. Lu and S. Nutt. Restricted Relaxation in Polymer Nanocomposites near the Glass Transition. [J] Macromolecules,2003,36(11):4010-4016.
    [63]C. Lee; X. Wei; J. W. Kysar; et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. [J] Science,2008,321(5857):385-388.
    [64]K. I. Winey; T. Kashiwagi; M. Mu.Conductivity andThermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers. [J] MRS Bull.,2007,32(4): 348-353.
    [1]L. J. Bonderer; A. R. Studart; L. J. Gauckler. Bioinspired Design and Assembly of Platelet Reinforced Polymer Films. [J] Science,2008,319(5866):1069-1073.
    [2]E. Munch; M. E. Launey; R. O. Ritchie. Dynamic Proteomics of Individual Cancer Cells in Response to a Drug. [J] Science,2008,322(5907):1511-1516.
    [3]M. E. Launey; R. O. Ritchie. On the Fracture Toughness of Advanced Materials. [J] Adv. Mater.,2009,21(20):2103-2110.
    [4]J. N. Coleman, U. Khan; Y. K. Gun'ko. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. [J] Adv. Mater.,2006,18(6):689-706.
    [5]Z. Spitalsky; D. Tasisb; K. Papagelis. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. [J] Prog. Polym. Sci., 2010,35(3):357-401.
    [6]W. Zhang; J. Suhr; N. A. Koratkar. Observation of High Buckling Stability in Carbon Nanotube Polymer Composites. [J] Adv. Mater.,2006,18(6):452-456.
    [7]L. Xie; F. Xu; Y. L, et al. Yang. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. [J] Macromolecules,2007,40(9):3296-3305.
    [8]L. An; Y. Z. Pan;Y. L. Yang; et al. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. [J] J. Mater.Chem.,2008,18(41):4928-4941.
    [9]M. Fang; K. G. Wang; H. B. Lu; et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. [J] J. Mater.Chem., 2009,19(38):7098-7105.
    [10]B. L. Smith; T. E. Schaffer; M. Viani; et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. [J] Nature,1999,399(6738): 761-763.
    [11]G. E. Fantner; T. Hassenkam; J. H. Kindt; et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. [J] Nat. Mater.,2005,4(8):612-616.
    [12]M. Kushner; V. Gabuchian; E. G. Johnson; et al. Biomimetic Design of Reversibly Unfolding Cross-Linker to Enhance Mechanical Properties of 3D Network Polymers. [J] J. Am. Chem. Soc.,2007,129(46):14110-14111.
    [13]R. Z. Wang; Z. Suo; A. G. Evans; et al. Deformation mechanisms in nacre. [J] J. Mater. Res.,2001,16(9):2485-2493.
    [14]K. S. Tai, M. Dao, S. Suresh, A. Palazoglu and C. Ortiz, Nanoscale heterogeneity promotes energy dissipation in bone. [J] Nat. Mater.,2007,6(6):454-462.
    [15]H. S. Gupta; J. Seto; W. Wagermaier;et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. [J] Natl. Acad. Sci. U. S. A.,2006,103(47): 17741-17746.
    [16]X. D. Li; Z. H. Xu; R. Z. Wang. In Situ Observation of Nanograin Rotation and Deformation in Nacre. [J] Nano. Lett.,2006,6(10):2301-2304.
    [17]C. Ortiz; M. C. Boyce. Bioinspired Structural Materials. [J] Science,2008, 319(5866):1053-1054.
    [18]S. J. Park; R. S. Ruoff. Chemical methods for the production of graphenes. [J] Nat. Nanotechnol.,2009,4(4):217-224.
    [19]O. Becker; G. P. Simon.Epoxy Layered Silicate Nanocomposites. [J] Adv. Polym. Sci.,2005,179(4):29-82.
    [20]M. A. Rafiee; J. Rafiee; I. Srivastava; et al. Fracture and Fatigue in Graphene Nanocomposites. [J] Small,2010,6(2):179-183.
    [21]D. R. Dreyer; S. J. Park; C. W. Bielawski; et al. The chemistry of graphene oxide. [J] Chem. Soc. Rev.,2010,39(1):228-240.
    [22]E. Y. Choi; T. H. Han. Noncovalent functionalization of graphene with end-functional polymers. [J] J. Mater. Chem.,2010,20(10):1907-1912.
    [23]S. H. Lee; D. R. Dreyer. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. [J] Macromol. Rapid Commun.,2010,31(3):281-288.
    [24]J. R. Lomeda; C. D. Doyle; D. V. Kosynkin; et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. [J] J. Am. Chem. Soc.,2008,130(48):16201-16206.
    [25]Y. J. Min; M. Akbulut; K. Kristiansen; et al. Understanding biophysicochemical interactions at the nano-bio interface. [J] Nat. Mater.,2008,8(7):527-538.
    [26]A. C. Balazs; T. Emrick; T. P. Russell. Nanoparticle Polymer Composites:Where Two Small Worlds Meet. [J] Science,2006,314(5802):1107-1110.
    [27]M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. V. Horn, Z. B. Guan; G. H. Chen; R. S. Krishnan. General Strategies for Nanoparticle Dispersion. [J] Science,2006,311(5768):1740-1743.
    [28]M. Fang; K. G. Wang; H. B. Lu; et al. layer graphenenanosheets with controlled grafting of polymer chains. [J] J. Mater. Chem.,2010,20(10):1982-1992.
    [29]W. S.Hummers; R E Offeman. Preparation of graphite oxide. [J] J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [30]S. Gilje; S. Han; M. Wang; et al. A Chemical Route to Graphene for Device Applications. [J] Nano. Lett.,2007,7(11):3394-3398.
    [31]S. N. I. Kovtyukhova; P. J. Ollivier; B. R. Martin; et al. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. [J] Chem. Mater.,1999,11(3):771-778.
    [32]M. A. Pimenta; G. Dresselhaus; M. S. Dresselhaus; et al. Studying disorder in graphite-based systems by Raman spectroscopy. [J] Phys. Chem. Chem. Phys.,2007, 9(11):1276-1291.
    [33]L. Cancado; K. Takai;T. Enoki; et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. [J] Appl. Phys. Lett., 2006,88(16):163106-163103.
    [34]S. Stankovich; D. A. Dikin; R. D. Piner; et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon,2007, 45(7):1558-1565.
    [35]S. J. Park; J. H. An; I. H. Jung; et al. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. [J] Nano. Lett.,2009,9(4): 1593-1597.
    [36]M. Q. Tran; J. T. Cabral; M. S. P. Shaffer; et al. Direct Measurement of the Wetting Behavior of Individual Carbon Nanotubes by Polymer Melts:The Key to Carbon Nanotube-Polymer Composites. [J] Nano. Lett.,2008,8(9):2744-2750.
    [37]E. Donth. The size of cooperatively rearranging regions at the glass transition. [J] J. Non-Cryst. Solids,1982,53(3):325-330.
    [38]O. Yamamuro; I. Tsukushi; A. Lindqvist; et al. Calorimetric Study of Glassy and Liquid Toluene and Ethylbenzene:Thermodynamic Approach to Spatial Heterogeneity in Glass-Forming Molecular Liquids. [J] J. Phys. Chem. B,1998, 102(9):1605-1609.
    [39]J. Zhu; J. D. Kim; H. Q. Peng; et al. Barrera.Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. [J] Nano Lett.,2003,3(8):1107-1113.
    [40]S. R. Wang; Z. Y. Liang; B. Wang; et al. Mechanical and electric properties of polycarbonate nanotube buckypaper. [J] Nanotechnology,2008,19(32):325705.
    [41]Y. Z. Pan; Y. Xu; L. An; et al. Hybrid Network Structure and Mechanical Properties. Properties of Rod-like Silicate/Cyanate Ester Nanocomposites. [J] Macromolecules,2008, 41(23):9245-9258.
    [42]J. D. Stevenson; J. Schmalian; P.G. Wolynes. The shapes of cooperatively rearranging regions in glass-forming liquids. [J] Nat. Phys.,2006,2(4):268-274.
    [43]H. Sillescu. Heterogeneity at the glass transition:a review. [J] J. Non-Cryst. Solids,1999,243(2-3):81-108.
    [44]K. W. Putz; M. J. Palmeri; R. B. Cohn; et al. Effect of Cross-Link Density on Interphase Creation in Polymer Nanocomposites. [J] Macromolecules,2008,41(18) 6752-6756.
    [45]M. A. Rafiee; J. Rafiee; Z. Wang; et al. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. [J] ACS Nano,2009,3(12):3884-3890.
    [46]L. E. Nielsen. Cross-Linking-Effect on Physical Properties of Polymers. [J] Polym. Rev.,1969,3(1):69-103.
    [47]M. Abdalla; D. Dean; P. Robinson; et al. Cure behavior of epoxy/MWCNT nanocomposites:The effect of nanotube surface modification. [J] Polymer,2008, 49(15):3310-3317.
    [48]G. M. Kim; H. Qin; X. Fang; et al.Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane:Cure behavior and toughening mechanisms. [J] J. Polym. Sci., Part B:Polym. Phys.,2003,41(24):3299-3313.
    [49]O. Becker; Y. B. Cheng; R. J. Varley; et al. Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins:The Influence of Cure Temperature on Morphology, Mechanical Properties, and Free Volume. [J] Macromolecules,2003,36(5):1616-1625.
    [50]J. W. Choi; J. Harcup; A. F. Yee; et al. Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. [J] J. Am.Chem. Soc.,2001,123(46):11420-11430.
    [1]C. Cottin-Bizonne; J. L. Barrat; L. Bocquet; et al. Low-friction flows of liquid at nanopatterned interfaces. [J] Nature Mater.,2003,2(4):237-240.
    [2]H. Y. Erbil; A. L. Demirel; Y. Avci; et al. Transformation of a Simple Plastic into a Superhydrophobic Surface. [J] Science,2003,299(5611):1377-1380.
    [3]R. Blossey. Self-cleaning surfaces-virtual realities. [J] Nature Mater.,2003,2(5): 301-306.
    [4]J. K. Yuan; X. G. Liu; O. Akbulut; et al. Superwetting nanowire membranes for selective absorption. [J] Nature Nanotech.,2008,3(6):332-336.
    [5]Y. M. Zheng; H. Bai; Z. B. Huang; et al. Directional water collection on wetted spider silk. [J] Nature,2010,463(7281):640-643.
    [6]J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, Y. Cui, Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. [J] Nano. Lett.,2010,10(6): 1979-1984.
    [7]F. Z. Zhang; L. L. Zhao; H. Y. Chen; et al. Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum. [J] Angew. Chem. Int. Ed.,2008,47(13):2466-2469.
    [8]O. Ikkala; G. ten Brinke. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. [J] Science,2002,295(5564):2407-2409.
    [9]H. S. Lee; S. M. Dellatore; W. M. Miller; et al. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. [J] Science,2007,318(5849):426-430.
    [10]A. Tuteja; W. J. Choi; M. L. Ma; et al. Designing Superoleophobic Surfaces. [J] Science,2007,318(5856):1618-1622.
    [11]J. Lahann; S. Mitragotri; T. N. Tran; et al. A Reversibly Switching Surface. [J] Science,2003,299(5605):371-374.
    [12]Y. Li, L. Li; J. Q. Sun. Bioinspired Self-Healing Superhydrophobic Coatings. [J] Angew. Chem. Int. Ed.,2010,49(35):6129-6233.
    [13]J. T. Han; S. Y. Kim; J. S. Woo; et al. Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution. [J] Adv. Mater.,2008,20(19):3724-3727.
    [14]C. Luo; X. L. Zuo; L. Wang; et al. Flexible Carbon Nanotube-Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process.[J] Nano Lett.,2008,8(12):4454-4458.
    [15]A. K. Geim. Graphene:Status and Prospects. [J] Science,2009,324(5934): 1530-1534.
    [16]F. Schwierz. Graphene transistors. [J] Nature Nanotech.,2010,5(7):487-496.
    [17]A. P. Yu; I. Roes; A. Davies; et al. Ultrathin, transparent, and flexible graphene films for supercapacitor application. [J] Appl. Phys. Lett.,2010,96(25): 253105-253107.
    [18]S. Stankovieh; D.A. Dikin; G. H. B. Domlnett; et al. Graphene-based composite materials. [J] Nature,2006,42(7100):282-286.
    [19]X. L. Li; G. Y. Zhang; X. D. Bai; et al. Highly conducting graphene sheets andLangmuir-Blodgett films. [J] Nat. Nanotechnol.,2008,3(9):538-542.
    [20]McCullough; R. D. Lowe; R. D. Jayaraman; et al. Synthesis and control of conducting polymer architectures:structurally homogeneous poly(3-alkylthiophenes). [J] J. Org. Chem.,1993,58(4):904-912.
    [21]A. Nish; J. Y. Hwang; J. Doig; et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. [J] Nature Nanotech.,2007,2(10): 640-646.
    [22]T. Yamamoto; D. Komarudin; M. Arai; et al. Extensive Studies on-Stacking of Poly (3-alkylthiophene-2,5-diyl)s and Poly(4-alkylthiazole-2,5-diyl)s by Optical Spectroscopy, NMR Analysis, Light Scattering Analysis, and X-ray Crystallography. [J] J. Am. Chem. Soc.,1998,120(9):2047-2058.
    [23]N. Kiriy; E. Jahne; H. J. Adler; et al. One-Dimensional Aggregation of Regioregular Polyalkylthiophenes. [J] Nano Lett.,2003,3(6):707-712.
    [24]C. J. Collison; L. J. Rothberg; V. Treemaneekarn; et al. Conformational effects on the photophysics of conjugated polymers:a two species model for MEH-PPV spectroscopy and dynamics. [J] Macromolecules,2001,34(7):2346-2352.
    [25]Y. L. Yang; M. C. Gupta; K. L. Dudley; et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. [J] Nano. Lett.,2005, 5(11):2131-2134.
    [1]G. Mayer. Rigid Biological Systems as Models for Synthetic Composites. [J] Science,2005,310(5751):1144-1147.
    [2]P. Fratzl; H. S.Gupta; F. D. Fischer; et al. Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus-Lessons from Biological Materials. [J] Adv. Mater.,2007,19 (18):2657-2661.
    [3]M. A. Meyers; P. Y. Chen; A. Y. M. Lin; et al. Biological Materials:Structure and Mechanical Properties. [J] Prog. Mater. Sci.,2008,53 (1):1-206.
    [4]H. D. Espinosa; J. E. Rim; F. Barthelat; et al. Merger of structure and material in nacre and bone-Perspectives on de novo biomimetic materials. [J] Prog. Mater. Sci. 2009,54(8):1059-1100.
    [5]P. Podsiadlo; A. K. Kauk; E. M.Arruda; et al. Ultrastrong and Stiff Layered Polymer Nanocomposites. [J] Science,2007,318 (5847):80-83.
    [6]L. J. Bonderer; A. R. Studart; L. J. Gauckler. Bioinspired Design and Assembly of Platelet Reinforced Polymer Films. [J] Science,2008,319(5866):1069-1073.
    [7]E. Munch; M. E. Launey; D. H. Alsem; et al. Tough, Bio-Inspired Hybrid Materials. [J] Science,2008,322 (5907):1516-1520.
    [8]S. Deville; E. Saiz; R. K. Nalla; et al. Freezing as a Path to Build Complex Composites. [J] Science,2006,311(5760):515-518.
    [9]M. M. Malwitz; A. Dundigalla; V. Ferreiro; et al. Layered structures of shear-oriented and multilayered PEO/silicate nanocomposite films. [J] Chem. Chem. Phys.,2004,6 (11):2977-2982.
    [10]T. Ebina; F. Mizukami. Flexible Transparent Clay Films with Heat-Resistant and High Gas-Barrier Properties. [J] Adv. Mater.,2007,19 (18):2450-2453.
    [11]H.Tetsuka; T. Ebina; H. Nanjo; et al. Highly transparent flexible clay films modified with organic polymer:structural characterization and intercalation properties. [J] J. Mater. Chem.,2007,17(33):3545-3550.
    [12]B. R. Heywood; S. Mann. Template-directed nucleation and growth of inorganic materials. [J] Adv. Mater.1994,6 (1):9-20.
    [13]A. Sellinger; P. M. Weiss; A. Nguyen; Lu, Y. F.; et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. [J] Nature,1998,394 (6690):256-260.
    [14]T. H.Lin; W. H. Huang; I. K. Jun; et al. Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field. [J] Chem. Mater.,2009,21(10):2039-2044.
    [15]P. Podsiadlo; M. Michel; K. Critchley; et al. Diffusional Self-Organization in Exponential Layer-By-Layer Films with Micro- and Nanoscale Periodicity. [J] Angew.Chem. Int. Ed.,2009,48 (38):7073-7077.
    [16]P. Podsiadlo; B. S. Shim; N. A. Kotov. Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films. [J] Chem. Rev.,2009,253 (23-24):2835-2851.
    [17]P. Podsiadlo; M. Michel; J. Lee; et al. Exponential growth of LBL films with incorporated inorganic sheets. [J] Nano Lett.,2008,8 (6):1762-1770.
    [18]J. J. Liang; Y. Huang; L. Zhang; et al. Molecular-level Dispersion of Graphene into Poly(vinyl alcohol), and Effective Reinforcement of Their Nanocomposites. [J] Adv. Funct. Mater.,2009,19(14):2297-2302.
    [19]L. M. Veca; F. S. Lu; M. J. Meziani; et al. Polymer functionalization and solubilization of carbon nanosheets. [J] Chem. Commun.,2009,46(18):2565-2567.
    [20]M. Fang; K. G. Wang; H. B. Lu; et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. [J] J. Mater.Chem., 2009,19(38):7098-7105.
    [21]S. Park; K. Lee; G. Bozoklu; et al. Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking. [J] ACS Nano., 2008,2(3):572-578.
    [22]H. Ko; S. Singamaneni; V. V. Tsukruk. Nanostructured Surfaces and Assemblies as SERS Media. [J] Small,2008,4(10):1576-1599.
    [23]Y. C. Chen; R. J. Young; J. V. Macpherson; et al. Single-Walled Carbon Nanotube Networks Decorated with Silver Nanoparticles:A Novel Graded SERS Substrate. [J] J. Phys. Chem. C.,2007,111(44):16167-16173.
    [1]F. Liu; P. b. Ming; J. Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension. [J] Physical Review B,2007,76(6):064120.
    [2]A. K. Geim; K. S. Novoselov. The rise of graphene. [J] Nat. Mater.,2007,6(3): 183-191.
    [3]Y. B. Zhang; Y. W. Tan; H. L. Stormer; et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. [J] Nature,2005,438(7065): 201-204.
    [4]K. S. Novoselov; D. Jiang. F. Sehedin; et al. Two-dimensional atomic crystals. [J] Proc. Natl. Acad. Sci. USA,2005,102(30):10451-10453.
    [5]S. Ghosh; 1. Calizo; D. Teweldebrhan; et al. Extremely high thermal eonduetivity of graphene:ProsPeets for thermalman agement a PPlieations in nanoeleetron ieeireuits. [J] APPI. Phys. Lett.,2008,92(15):151911-151913
    [6]S. J. Park; R. S. Ruoff. Chemical Methods for the Production of Graphenes. [J] Nat. Nanotechnol.,2009,4(4):217-224.
    [7]A. Dato; V. Radmilovic; Z. Lee; et al. Substrate-Free Gas-Phase Synthesis of Graphene Sheets. [J] Nano. Lett.,2008,8(7):2012-2016.
    [8]Y. Zhu; S. Murali; W. Cai; et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications. [J] Adv. Mater.,2010,22(35):3906-3924.
    [9]C. Xu; X. Wang; I. J. Yang; et al. Fabrication of a graphene-cuprous oxide composite. [J]J.Solid State Chem.,2009,182(9):2486-2490.
    [10]C. Xu; X. Wang; J. W. Zhu; et al. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. [J] J.Mater.Chem.,2008,18(46):5625-5629.
    [11]S. M. Paek, E. Yoo; I. Honma. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. [J] Nano., Lett.,2009,9(1): 72-75.
    [12]D. H. Wang; D. W. Choi; J. Li; et al. Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. [J] Aes. Nano.,2009,3(4):907-914.
    [13]A. Cao; Z. Liu; S. Chu, WLIM; et al. A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. [J] AdV. Mater.,2010,22(1):103-106.
    [14]E. Yoo; T. Okata; T. Akita. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. [J] Nano. Letters,2009,9(6): 2255-2259.
    [15]G. M. Seheuermann; L. Rumi; P. Steurer; et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction. [J] J.Am.Chem.Soe.,2009, 131(23):8262-8270.
    [16]C. Xu; X.Wang; J. W. Zhu. Graphene-Metal Particle Nanocomposites. [J]J.Phys.Chem.C.,2008,112(50):19841-19845.
    [17]R. Muszynski; B. Seger; P. V. Kamat. Decorating Graphene Sheets with Gold Nanoparticles. [J] J. Phys. Chem.C.,2008,112(14):5263-5266.
    [18]Y. C. Si; E. T. Samulski. Exfoliated Graphene Separated by Platinum Nanoparticles. [J] Chem. Mater.,2008,20(21):6792-6797.
    [19]W. S.Hummers; R E Offeman. Preparation of graphite oxide. [J] J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [20]S. Gilje; S. Han; M. Wang; et al. A Chemical Route to Graphene for Device Applications. [J] Nano Lett.,2007,7(11):3394-3398.
    [21]S. N. I. Kovtyukhova; P. J. Ollivier; B. R. Martin; et al. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. [J] Chem. Mater.,1999,11(3):771-778.
    [22]H. Kong; C. Gao; D. Y. Yan. Functionalization of Multi-walled Carbon Nanotubes by Atom Transfer Radical Polymerization (ATRP) and Defunctionalization of the Products. [J] Macromolecules,2004,37(11):4022-4230.
    [23]M. A. Pimenta; G. Dresselhaus; M. S. Dresselhaus; et al. Studying disorder in graphite-based systems by Raman spectroscopy. [J] Phys. Chem. Chem. Phys.,2007, 9(11):1276-1291.
    [24]K. N. Kudin; B. Ozbas; H. C. Schniepp; et al. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. [J] Nano Lett.,2008,8(1):36-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700