大跨度斜拉桥涡激振动试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着设计理论和计算方法的进步,斜拉桥技术得到了十分迅速的发展。由于斜拉桥跨径的不断增大,桥梁结构越来越轻柔,自振频率也越来越低,对风的作用也更加敏感,气动弹性问题经常会成为结构强度、刚度和稳定性设计的制约因素。因此,抗风问题已成为决定建造大跨度桥梁成功与否的关键问题之一。
     桥梁涡激振动是大跨度桥梁在低风速下很容易出现的一种重要的气动弹性现象。尽管涡激振动不像颤振、驰振那样会引起整个结构失效,但由于是在低风速下很容易发生的振动现象,况且振幅之大足以影响行车安全,还可能造成结构刚度破坏、从而影响行人和车辆的舒适性以及缩短构件的疲劳寿命。因而对桥梁涡激振动进行研究是很有必要的。
     本文以某跨海大桥为工程背景,通过该大桥的主梁节段模型风洞试验和全桥气动弹性模型风洞试验来研究桥梁涡激振动,研究其施工状态和成桥状态的涡激振动响应情况,从而对桥梁结构风致涡振响应做出综合评价,为该跨海大桥提供可靠的抗风设计参数,也为以后同类桥梁结构的抗风设计提供参考。本文研究的主要内容如下:
     在节段模型试验中,试验模型包括三种:主梁推荐方案、主梁比较方案一和主梁比较方案二。模型缩尺比均为1:60,长均为1.25m,宽约0.5m,长宽比约为2.5;各模型分为有、无栏杆两种配置。通过试验得到了涡激振动的临界风速,并分析了栏杆、风攻角对涡激振动的影响。试验结果表明:主梁推荐方案、主梁比较方案一和主梁比较方案二都会发生不同程度的涡激振动。
     在全桥气动弹性模型试验中,分别就全桥状态、最大单悬臂状态、最大双悬臂状态的涡激振动进行了研究;对独塔的涡激振动性能进行了探讨;并分析了栏杆、风速和风向角对涡激振动的影响以及未发现明显的大幅涡激振动的原因。试验结果表明:在试验的各状态下,主梁及桥塔均未发现有害的涡激振动。
Because of the design theory and calculation method of progress, cable-stayed bridge has been very rapid development. However, As cable-stayed bridge span to the growing,bridge structure Becomes more and more gentle, more and more low natural frequency, and more sensitive to wind. aeroelastic problems often become design constraints of the structural strength, stiffness and stability. Therefore, the wind has become the key issues to decide whether the long-span bridges is successful or not.
     Vortex-induced vibration of the bridge is an important aeroelastic phenomena, it is easy for long-span bridges to occur Vortex-induced vibration.Although the vortex-induced vibration would not cause the structural failure, as the flutter or the buffeting,but it’s very susceptible to occur at a low wind speed, moreover amplitude large enough to affect traffic safety, and cause stiffness damage, thus affecting the comfort of pedestrian and vehicle, and reducing fatigue life. Thus it is necessary to study vortex-induced vibration of bridge.
     This paper bases on a sea bridge, through the bridge section model wind tunnel tests of the main beam and full bridge aeroelastic model wind tunnel tests to study vortex-induced vibration of bridges, studying the vortex induced vibration response of it during construction state and full bridge state, and make comprehensive evaluation of vortex induced vibration of bridge structure, providing reliable wind parameters to the bridge design, and providing a reference for the future similar bridges design.The main contents as follows:
     In section model test,section model consists of four models: the recommended Scheme of girder, the first comparative scheme of girder, the second comparative scheme of girder. The scale of all of the Model is1:60, Length is 1.25m, width is 0.5m, length to width is about 2.5. Each model includes two configurations: railing and without railing. Through experiments, the critical wind speed of the vortex-induced vibration is received. And analyzed effect of the railing and the wind attack angle on the vortex-induced vibration. The test results showed that: the recommended Scheme of girder, the first comparative scheme of girder and the second comparative scheme of girder all occur vortex-induced vibration.
     In the full-bridge aeroelastic model tests, vortex-induced vibration of full-bridge states, the largest single-cantilever state and the largest double cantilevers state has been studied; The vortex-induced vibration properties of the single tower has been discussed; And analyzed the effect of the railing, the wind speed and wind direction on the vortex-induced vibration, and the reason for no obvious vortex-induced vibration. The test showed that: in each test state, the harmful vortex-induced vibration has not been found in the main beams and the bridge towers.
引文
[1]项海帆,现代桥梁抗风理论与实践[M].人民交通出版社.2005.
    [2]贺德馨,风工程与工业空气动力学[M].国防工业出版社.2006.
    [3] Scruton C.Aerodynamics buffeting on bridge[M]. Engineer,1955,199(5181).
    [4] Devenport A G.Buffeting of a suspension bridge by storm winds[J].J.of struct.Div, ASCE, 1962,88(3):233—268.
    [5] Scanlan R H,Gade R H.Motion of suspended bridge spans under gusty wind[J].J.of Struct. Div.ASCE,1997,103:1967—1883.
    [6] Jones N P,Sanlan R H,Jain A,Katsuchi H.Advances(and challenges) in the prediction of long-span bridge response to wind[C].Proc.of int’l Symposium on Advances in bridge Aerodynamics,1998:59-86.
    [7]刘健新.桥梁对风反应中的涡激振动及制振[J].中国公路学报. Vol.8,No.2,1995.
    [8]中华人民共和国推荐行业标准,公路桥梁抗风设计规范[S]. JTG/T D60-01—2004.
    [9]陈政清,项海帆.桥梁风工程[M].人民交通出版社.2005.
    [10]顾明,刘慈军,罗国强,等.斜拉桥拉索的风(雨)激振及控制[J].上海力学,1998,19(4) : 281—288.
    [11]陈政清,柳成荫,倪一清,等.洞庭湖大桥拉索风雨激振中的风场参数[J].铁道科学与工程学报, 2004,1(1):52—57.
    [12] Main J A, Jones N P.Full2scale measurements of stay cable vibrat ion [A]. Wind Engineering into the 21st Century . 1999, Balkema, Ro t terdam, 963-970.
    [13] Yamaguchi H.Analytical study on growth mechanism of rain vibration of cables[J].J.of WEIA,1990,33:73-80
    [14] Matsumato M,Yokoyama T,Wind-induced cable vibration of cable-stayed bridges in Japan[C].Proc.Canada-Japan workshop on bridge aerodynamics,Ottawa,sept.1989:101-110.
    [15] Verwiebe C.Rain-induced vibration of cables and bars[C].Bridge Aerodynamics,edit by Larsen A & Esdahl S,1998:255-266.
    [16]埃米尔希缪,罗伯特H斯坎伦.风对结构的作用——风工程导论[M].刘尚培,项海帆,谢霁明,译.第一版,同济大学出版社.
    [17]鲜荣,廖海黎,李明水.大跨度桥梁主梁沿跨向涡激振动响应计算[J],西南交通大学学报,2008,12.Vol.43(6).
    [18] Fujino.Y,Yoshida.Y.Wind-induced vibration and control of Trans-Tokyo Bay Crossing Bridg e[J].J.Stru.Eng,2002,Agu:1012-1025
    [19] BATTISTA R C,PFEIL S.Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices[J].Journal of Wind Engineering and Industrial Aerodynamics, 2000,84(3):273-288.
    [20] GüNTER Schewe,LATSEN A.Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76:829-838.
    [21] Niemann H J. A review of recent experiments on the flow past circular cylinders[J]. J. of Wind Eng. Ind. Aerodyn,1990(33).
    [22] Melbourne W H, Cheung J C K.Turbulence effects on some aerodynamics parameters of a circular cylinder at supercritical Reynolds numbers[J]. J. of Wind Eng. Ind. Aerodyn, 1983(14):399-410.
    [23] Schewe G J. Fluid Mech[M]. 1983(133):265-285.
    [24]孙天风,崔尔杰.钝物体绕流和流致振动研究[J].空气动力学学报.1987,5(1):62-75
    [25] Blevins R D. Flow-induced vibration[M].Van Nostrand Reinhoid,1977.
    [26] Wootton L R, Scruton C. Aerodynamic stability[C]. A CIRIA Seminar on the modern design of wind-sensitive structures.
    [27] Strouhal V.“über eine besondere Art der Tonerregung,”[M].Ann.Phys,5(1878),216-250.
    [28]李国豪,桥梁结构稳定与振动[M].中国铁道出版社,1992.
    [29]孙天风,邵传平,林荣生,顾志福.小间距并列圆柱在高雷诺数时的压力分布[C].第四届全国风工程及工业空气动力学学术会议论文集,1994:320-325.
    [30]林荣生,孙天风,邵传平,顾志福.小间距串列二维双列圆柱的绕流特性[C].第四届全国风工程及工业空气动力学学术会议论文集,1994:344-349.
    [31]顾志福,孙天风,贺德馨,张亮亮.高雷诺数时串列双圆柱体脉动压力的试验研究[J].空气动力学报,1992,10(2):176-184.
    [32] Gu Z F, Sun T F, He D X, Zhang L L.Two circular cylinders in hign turbulence flow at hign Reynolds numbers[J]. J. of Wind Eng. Ind. Aerodyn.,1993(49):379-388.
    [33] Zdravkevich M M. Review of flow interference between two circular cylinders in various arrangements[J]. J. of Fluids Engineering, 1977,99(4):618-633.
    [34] Lakshmana B H. Oscillatory response of circular cylinder due to interference effects[M]. Preprints of BBAA2,1993.
    [35] Hartlen R.T.,Baines W.D.,and Currie I.G.,Vortex-Excited Oscillations of a Circular Cylinder[C].University of Toronto Technical Report No. 6809, Toronto. 1968.
    [36] Hartlen R.T. and Currie I.G.,“Lift-Oscillator Model of Vortex-Induced Vibration,”[J] .J.Eng.Mech. Div.ASCE, 96(1970).577-591.
    [37] Griffin O. M., Skop R. A. ,and Koopmann G. H.,“The Vortex-Excited Resonant Vibrations of Circular Cylinders,”[J]. J. Sound.Viv., 31(1973),235-249.
    [38] Skop R.A. and Griffin O.M.,“A Model for the Vortex-Excited Response of Bluff Cylinders,”[J]. J. Sound Vib.,27(1973), 225-233.
    [39] Skop R.A., On Modeling Vortex-Excited Oscillations[J].Naval Research Laboratory Memorandum Report No.2927, Washington, D.C., 1974.
    [40] Skop R.A. and Griffin O.M.,“On a Theory for the Vortex-Excited Oscillations of Flexible Cylindrical Structures,”[J]. J. Sound Vib.,41(1975),263-274.
    [41] Griffin O.M., Skop R.A., and Ramberg S.E.,“Modeling of the Vortex-Induced Oscillations of Cables and Bluff Structures,”[C] paper delivered to society for Experimental Stress Analysis, Silver Spring, Md., 1976.
    [42] Minorsky N., Nonlinear Oscillations[M], Van Nostrand, New York, 1962.
    [43]王卫华,李明水,陈忻.强迫振动法提取桥梁气动导数研究[J].实验流体力学,2005,03.
    [44]中华人民共和国国家标准.建筑结构荷载规范(GB 50009-2001)[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700