基于手性氨基酸衍生物配体配合物的合成及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属-有机框架材料(MOFs)的设计和合成以其结构的多样性及在催化、发光等功能材料领域的广泛的用途愈来愈受到人们的重视。本文在对手性的金属有机配位聚合物进行综述的基础上,设计合成了一系列基于手性氨基酸衍生物配合物,并对其结构和性能进行了研究。本论文的主要研究内容如下:
     (1)以对甲苯磺酰-L-谷氨酸为配体,合成了11种新型配合物: {[M (tsgluO)(2,4’-bipy)2(H_2O)2]·5H_2O}n (M= Ni,1; Co,2), {M(tsgluO)(4,4’-bipy)·0.5H_2O}n (M= Ni,3; Co,4), {[Cu(tsgluO)(H_2O)]_2·3H_2O}n (5), {Cu(tsgluO)(2,2’-bipy)}n (6), {Zn(imi)(H_2O)(tsgluO)}n (7), {[Zn(2,4’-bipy)(H_2O)](tsgluO)}n (8), [Mn(4,4’-bipy)_2(H_2O)_4](HtsgluO)_2·2H_2O (9), {Zn(bpp)_2(tsgluO-Me)_2}n (10), {Zn(bpp)(tsgluO-Me)_2}n (11)
     (H_2tsgluO = (+)-N-对甲苯磺酰-L-谷氨酸;bipy =联吡啶;imi=咪唑;bpp=1,3-联(4-吡啶基)丙烷)。用元素分析、红外光谱、热重分析、X-射线单晶衍射进行了表征,并对配合物1-5的磁性、配合物7-11的荧光性质及配合物5的催化性能进行了研究。此外,还意外获得化合物tsgluO-Me2 (12)的单晶结构。
     配合物1和2同构,它们都是Cc非心空间群,具有一维链状结构,链与链之间进一步通过π-π堆积和氢键作用连接成三维超分子结构。配合物3是P21手性空间群,具有二维层状结构,层与层间通过氢键作用连接成三维超分子结构。配合物4是P-1中心空间群,具有二维层状结构,层与层间通过π-π堆积和氢键作用连接成具有一维隧道的三维超分子结构,隧道中有晶格水分子填充。配合物5是P21手性空间群,由双核“浆轮”单元构成的一维链状配合物,链间再通过极弱的π-π堆积和分子间氢键作用连接成具有一维通道的三维网状结构,通道中占据着客体水分子。配合物6是P212121手性空间群,具有一维双链结构。配合物7是P21手性空间群,具有一维双链结构,进一步通过氢键作用形成二维超分子结构。配合物8是P21/c中心空间群,具有一维单链结构。配合物9是P-1中心空间群,包含有[Mn(4,4’-bipy)_2(H_2O)_4]~(2+)阳离子和HL-阴离子两部分,它们之间通过π-π堆积、氢键以及范德华力作用形成二维超分子结构。配合物10是P-1中心空间群,具有双链结构,并通过氢键作用形成具有一维通道无客体分子占据的二维超分子结构。配合物11是P-1中心空间群,具有一维单链结构。化合物12是P-1中心空间群,由配体tsgluO-H_2和甲醇酯化得到的小分子化合物。配合物1-4中存在非常弱的反铁磁相互作用,配合物5中存在双核铜的反铁磁耦合作用。配合物7-11都表现出较强的荧光。配合物5在苯乙烯不对称环氧化反应中,具有较好的催化活性。
     (2)以邻苯二甲酰-L-缬氨酸为配体,构筑了7种新型配合物: [Mn(phen)_2(HL)_2·3.5H_2O] (13), [Mn(phen)_2(phth)(H_2O)·4H_2O] (14), {Cu(phen)(H_2O)(phth)·CH3OH}n (15), {[Cu(2,2’-bipy)(H_2O)](phth)·3.5H_2O}n (16), {Zn(phen)(phth)(H_2O)·1.125H_2O}n (17), {[M(4,4’-bipy)(H_2O)_2](phth)·2H_2O}n (M= Zn,18; Mn,19)
     (H_2L =邻苯二甲酰-L-缬氨酸;phth2- =邻苯二甲酸根离子;bipy =联吡啶;phen = 1, 10-邻菲啰啉),用元素分析、红外光谱、热重分析、X-射线单晶衍射进行了表征,并对配合物14,15,16和19的磁性进行了研究。
     配合物13具有C2/c中心空间群,是小分子化合物,通过π-π堆积和氢键作用形成具有一维通道的三维网状结构,通道中占据着客体水分子。很遗憾的是,配合物14-19中配体邻苯二甲酰-L-缬氨酸进行了水解,最后形成了phth2-的配合物。配合物14具有P21/c中心空间群,是小分子化合物,仅通过π-π堆积作用形成具有一维通道的链状结构。配合物15是Pbcm中心空间群,具有一维链结构,通过氢键作用形成具有客体分子占据的纳米孔道二维网状结构。配合物16是P21/c中心空间群,具有一维链结构,通过π-π堆积和氢键作用形成三维超分子结构。配合物17是P21/c中心空间群,具有一维螺旋链结构,并通过弱的π-π堆积作用形成二维网格结构。配合物18和19是同构的,金属中心分别为锌和锰,都是P2/c中心空间群,都具有二维层状结构,并通过氢键作用形成三维超分子结构。磁性研究表明,配合物14,15,16和19具有反铁磁相互作用。
In recent years, the design and synthesis of metal-organic frameworks (MOFs) have afforded a great deal of interest because of their various structures and extensive applications in the filed of functional materials such as catalysis, luminescence and etc. This paper summarizes the research advances of chiral coordination polymers. A series of coordination polymers constructed by chiral amino derivatives have been synthesized, and their crystal structures and properties were determined. In this paper, the main results are as follows:
     First, eleven coordination compounds constructed by (+)-N-Tosyl-L-glutamic acid: {[M (tsgluO)(2,4’-bipy)2(H_2O)2]·5H_2O}n (M= Ni,1; Co,2), {M(tsgluO)(4,4’-bipy)·0.5H_2O}n (M= Ni,3; Co,4), {[Cu(tsgluO)(H_2O)]_2·3H_2O}n (5), {Cu(tsgluO)(2,2’-bipy)}n (6), {Zn(imi)(H_2O)(tsgluO)}n (7), {[Zn(2,4’-bipy)(H_2O)](tsgluO)}n (8), [Mn(4,4’-bipy)_2(H_2O)_4](HtsgluO)_2·2H_2O (9), {Zn(bpp)_2(tsgluO-Me)_2}n (10), {Zn(bpp)(tsgluO-Me)_2}n (11) (H_2tsgluO = (+)-N-Tosyl-L-glutamic acid, bipy= bipyridine, imi= imidazole, bpp= 1,3-bis(4-pyridyl)propane) have been synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, thermal analysis, and their fluorescent and magnetic properties and asymmetric catalysis were also studied. Unexpectedly, tsgluO-Me2 (12) was obtained.
     Compounds 1 and 2 are isostructural and crystallize in the acentric monoclinic space group Cc, forming the same 1D chain structures. The chains are further connected byπ-πstacking and hydrogen bonds interactions to form 3D supramolecular network. Compound 3 shows the chiral space group P21, forming a homochiral 2D architecture, which is further connected by hydrogen bonding interactions to form three-dimensional supramolecular network. Compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co2O6N2]n4- units, which presents a 2D bilayer framework and is further connected by hydrogen bonding andπ-πpacking interactions to form three-dimensional supramolecular network containing one-dimensional channels with lattice water molecules. Compound 5 crystallizes in the space group P21 and contains a paddle-wheel dicopper(II) structure, which is featuring 1D double chains. The chains are further self-assembled through the non-covalent interactions of weakπ-πstacking and hydrogen bond to form pseudo-3D supramolecular structures with 1D channels, where the guest water molecules are located. Compounds 6 crystallizes in the chiral space group P212121 and is giving ladder-like 1D double chains. Compounds 7 crystallizes in the chiral space group P21 and shows ladder-like 1D double chains. The double chains are further connected by hydrogen bonding to form two-dimensional supramolecular network. Compound 8 crystallizes in the space group P21/c and is giving a 1D single chain, which is self-assembled to form 2D supramolecular structures through hydrogen bonding interactions. Compound 9 crystallizes in the space group P-1 and is connected byπ-πstacking and hydrogen bonding interactions to form 3D supramolecular network. Compounds 10 and 11 crystallize in the space group P-1 and display 1D chain structures. What different is that compound 10 is a 1D bpp-connected Zn–bpp–Zn double chain and further hydrogen-bonded into 2D networks. The formation of the tsgluO-Me2 moiety in compound 12 results from an in situ esterification reaction between tsgluO-H_2 and methanol and is driven by an excess of methanol and anhydrous conditions. Additionally, magnetic properties study indicates that compounds 1-4 show weak antiferromagnetic interactions. Compound 5 shows antiferromagnetic interactions between the Cu(II) centers of each dicopper unit. Compounds 7-11 show intense fluorescence at room temperature. Catalytic study indicates that compound 5 shows well-catalytic properties.
     Second, seven coordination compounds constructed by phthalyl-L-valine acid: [Mn(phen)_2(HL)_2·3.5H_2O] (13), [Mn(phen)_2(phth)(H_2O)·4H_2O] (14), {Cu(phen)(H_2O)(phth)·CH3OH}n (15), {[Cu(2,2’-bipy)(H_2O)](phth)·3.5H_2O}n (16), {Zn(phen)(phth)(H_2O)·1.125H_2O}n (17), {[M(4,4’-bipy)(H_2O)_2](phth)·2H_2O}n (M= Zn,18; Mn,19) (H_2L = phthalyl-L-valine acid, H_2phth = phthalic acid, bipy = bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, thermal analysis, and their fluorescent and magnetic properties.
     Compound 13 crystallizes in the space group C2/c and is further connected byπ-πstacking and hydrogen bonds interactions to form 3D supramolecular network containing 1D channels with lattice water molecules. Compound 14 crystallizes in the space group P21/c and is further extended into 1D chain throughπ-πstacking. Compound 15 crystallizes in the space group Pbcm and exhibits a 1D chain structure, which is further hydrogen-bonded into 2D networks. But unfortunately, the phthalyl-L-valine acid decomposed into the phth2- ligand in the formation of compounds 16, 17, 18 and 19. Compound 16 crystallizes in the space group P21/c and shows a 1D chain structure, which is further extended into 3D supramolecular network throughπ-πstacking and hydrogen bonds interactions. Compound 17 crystallizes in the space group P21/c and is a 1D helix chain structure, which is further linked into 2D networks throughπ-πstacking. Compounds 18 and 19 are isostructural and crystallize in the space group P2/c. They exhibit the same 2D layers, which are further connected by hydrogen bonds interactions to form 3D supramolecular network. Magnetic properties study indicates that compounds 14, 15, 16 and 19 show weak antiferromagnetic interactions.
引文
[1]孟祥华,施继成,含L-酒石酸衍生物的手性配位聚合物合成、鉴定及性能研究[D].优秀硕士论文,2008年6月.
    [2]潘晶晶,段春迎.单一手性及稀土金属有机框架结构的合成[D].优秀硕士论文,2009年6月.
    [3]于平,手性配合物研究进展[J].化工进展,2002, 21(9): 635-638.
    [4]王锡森,宋玉梅,叶琼,等.手性及非中心对称配位聚合物的组装[J].科学通报,2005, 50(21): 2317-2340.
    [5] Jeletic M S, Jan M T, Ghiviriga I, et al. New iridium and rhodium chiral di-N-heterocyclic carbene (NHC) complexes and their application in enantioselective catalysis [J].Dalton Trans., 2009, (15): 2764-2776.
    [6] Lee K Y, Lee C Y, Kim G J. Non-covalent immobilization of chiral (salen) complexes on HF-treated mesoporous MFI-type zeolite for asymmetric catalysis [J].Bull. Korean Chem. Soc., 2009, 30(2): 389-396.
    [7] Rich J, Rodriguez M, Romero I, et al. Mn(II) complexes containing the polypyridylic chiral ligand (-)-pineno[5,6]bipyridine. Catalysts for oxidation reactions [J].Dalton Trans., 2009, (38): 8117-8126.
    [8] Wang C F, Li D P, You X Z, et al. Assembling chirality into magnetic nanowires: cyano-bridged iron(III)-nickel(II) chains exhibiting slow magnetization relaxation and ferroelectricity. [J].Chem. Commun., 2009, (45): 6940-6942.
    [9] Lin J D, Long X F, Lin P, Du, et al. A Series of Cation-Templated, Polycarboxylate-Based Cd(II) or Cd(II)/Li(I) Frameworks with Second-Order Nonlinear Optical and Ferroelectric Properties [J].Cryst. Growth Des., 2010, 10(1): 146-157.
    [10] Schnitzler V, Nonglaton G, Roussiere H, et al. Nitrogen-Based Chirality Effects in Novel Mixed Phosphorus/Nitrogen Ligands Applied to Palladium-Catalyzed Allylic Substitutions [J].Organometallics, 2008, 27(22): 5997-6004.
    [11] Ouyang X, Chen Z X, Liu X F, et al. One-dimensional (1D) helical and 2D homochiral metal–organic frameworks built from a new chiral octahydrobinaphthalene-derived dicarboxylic acid [J]. Inorg. Chem. Commun., 2008, 11(9): 948–950.
    [12] Ainscough E W, Brodie A M, Davidson R J, et al. The first coordination polymer containing a chiral cyclotriphosphazene ligand [J]. Inorg. Chem. Commun., 2008,11(2): 171–174.
    [13] Lee H Y, Park J, Lah M S, et al. One-Dimensional Double Helical Structure and 4-Fold Type [2 + 2] Interpenetration of Diamondoid Networks with Helical Fashion [J]. Cryst. Growth Des., 2008, 8(2): 587-591.
    [14] Liang X Q, Li D P, Zhou X H, et al. Metal-Organic Coordination Polymers Generated from Chiral Camphoric Acid and Flexible Ligands with Different Spacer Lengths: Syntheses, Structures, and Properties [J]. Cryst. Growth Des., 2009, 9(11): 4872-4883.
    [15] Chen H F, Guo G C, Wang M S, et al. Spontaneous chiral resolution, nonlinear optical and luminescence of eight-coordinate lanthanide(III) complexes [J].Dalton Trans., 2009, (46): 10166-10168.
    [16] Yuksel F, Chumakov Y, Luneau D . The chiral Zn(II)–Na(I) coordination polymer: Synthesis, crystal structure,thermal and optical properties [J]. Inorg. Chem. Commun., 2008, 11(7): 749–753.
    [17] Chen G J, Ouyang Y, Yan S P, et al. Magnetic property of a 1D triazacycloalkanes Ni(II) with chiral helical structure complex {[Ni[12]aneN3](lN,S-SCN)(SCN)}n [J]. Inorg. Chem. Commun., 2008, 11(7): 138–141.
    [18] Braverman M A, Nettleman J H, Supkowski R M, et al. Copper Phthalate Coordination Polymers Incorporating Kinked Dipyridyl Ligands:An Unprecedented 8-Connected Network and One-Dimensional Chiral Nanobarrels with Hydrophobic Channels Constructed from Septuple Helical Motifs [J].Inorg. Chem., 2009, 48(11): 4918–4926.
    [19] Gurunatha K L, Dutta S, Mostafa G, et al. A 3D chiral supramolecular framework of Cu(II): Synthesis, structure and magneto-structural correlations [J]. Inorg. Chim. Acta, 2009, 362(10): 3745–3750.
    [20] Wen H R, Tang Y Z, Liu C M, et al. One-Dimensional Homochiral Cyano-Bridged Heterometallic Chain Coordination Polymers with Metamagnetic or Ferroelectric Properties [J]. Inorg. Chem., 2009, 48(21): 10177-10185.
    [21] Hang T, Fu D W, Xiong R G, et al. Two Novel Noncentrosymmetric Zinc Coordination Compounds with Second Harmonic Generation Response, and PotentialPiezoelectric and Ferroelectric Properties [J].Cryst. Growth Des., 2009, 9(5): 2026-2029.
    [22] Li G, Yu W B, Cui Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. [J].J. Am. Chem. Soc., 2008, 130(14): 4582-4583.
    [23] Yan C G, Chen L, Feng R, et al. Thermally stable helical chain and octanuclear Ag(I) coordination networks with yellow luminescence [J].CrystEngComm, 2009, 11(11): 2529-2535.
    [24] Nishi K, Arata S, Matsumoto N, et al. One-Dimensional Spin-Crossover Iron(II) Complexes Bridged by Intermolecular Imidazole-Pyridine NHN Hydrogen Bonds, [Fe(HLMe)3]X2 (HLMe = 2-Methylimidazol-4-yl-methylideneamino-2-ethylpyridine; X = PF6, ClO4, BF4) [J].Inorg. Chem., (2010), 49(4): 1517-1523.
    [25] Meng X H, Shi J C,Tong Q S, et al. Synthesis and crystal structure of a novel chiral coordination polymer [Zn2(C7H8O6)2(bipy)2(H2O)2]·4H2O [J].Gaodeng Xuexiao Huaxue Xuebao, 2008, 29(6): 1086-1089.
    [26] Lu W G, Gu J Z, Jiang L, et al. Achiral and Chiral Coordination Polymers Containing Helical Chains: The Chirality Transfer Between Helical Chains [J]. Cryst. Growth Des., 2008, 8(1): 192-199.
    [27] Pierre T. A Nanosized Uranyl Camphorate Cage and its Use as a Building Unit in a Metal-Organic Framework [J]. Cryst. Growth Des., 2009, 9(11): 4592-4594.
    [28] Chen Z L, Su Y, Xiong W, Wang, et al. Controlling the dimensionalities and structures of homochiral Zn(II) and Cd(II) compounds of N-(p-tosyl)-S-carboxymethyl-L-cysteine via tuning the connecting modes of metal ions and chiral linkers by different kinds of ancillary ligands [J].CrystEngComm, 2009, 11(2): 318-328.
    [29] Fielden J, Quasdorf K, Ellern A, et al. A homochiral 2D copper(II) coordination framework [J]. Eur. J. Inorg. Chem., 2009, (6): 717-720.
    [30] Gu Z G, Xu Y F, Yin X J, et al. Cluster-based copper(II) coordination polymers with azido bridges and chiral magnets [J].Dalton Trans., 2008, (41): 5593–5602.
    [31] Bailey A J, Lee C, Feller R K, et al. Comparison of Chiral and Racemic Forms of Zinc Cyclohexane trans-1,2-Dicarboxylate Frameworks: A Structural, Computational, and Calorimetric Study [J].Angew. Chem. Int. Ed. 2008, 47(45): 8634–8637.
    [32] Tian Z F, Duan H B, Xuan F, et al. A novel heterostranded double-helical coordination polymer with chiral channels emitting blue fluorescence [J].Inorg. Chem. Commun., 2009, 12(5): 417-419.
    [33] Yuan G Z, Zhu C F, Xuan W M, et al. Enantioselective Recognition and Separation by a Homochiral Porous Lamellar Solid Based on Unsymmetrical Schiff Base Metal Complexes [J].Chem.- Eur. J., 2009, 15(26): 6428-6434.
    [34] Beghidja A, Beghidja C, Rogez G, et al. Synthesis, crystal structure and spectroscopic properties of a new chiral cadmium (II) malate [J]. Inorg. Chem. Commun., 2008, 11(9): 1088–1090.
    [35] Li H Y, Huang F P, Jiang Y M, et al. Two 3D noninterpenetrated chiral coordination polymers with uniform (103)-srs and (42.63.8)-sra nets [J]. Inorg. Chim. Acta, 2009, 362(7): 1867–1871.
    [36] Xiong W, Su Y, Liang F P, et al. A three-dimensional homochiral metal-organic framework constructed from manganese(II) with S-carboxymethyl-N-(p-tosyl)-L-cysteine and 4,4'-bipyridine [J].Acta Crystallographica, Section C: Crystal Structure Communications, 2009, C65(2): m56-m58.
    [37] Chen Q, Zhou Y L, Zeng M H. Shape recognition and cooperative magnetic behaviors observed in a chiral 3D coordination polymer containing mixed geometries cobalt(II) dimers linked by isonicotinate and D-(+)-camphorate [J].J. Mol. Struct., 2009, 932(1-3): 55-60.
    [38] Liang L L, Ren S B, Zhang J, et al. Two Thermostable Three-Dimensional Homochiral Metal-Organic Polymers with Quartz Topology [J]. Cryst. Growth Des., 2010, 10(3): 1307-1311.
    [39] Lv Y K, Zhan C H, Jiang Z G, et al. A chiral helical Mn(II) MOF showing unusual utg topology based on Dsaccharic Acid [J].Inorg. Chem. Commun., (2010), doi: 10.1016/j.inoche.2010.01.007
    [40] Martin D P, Staples R J, LaDuca R L. A Chiral Self-Catenated Dual-Ligand Coordination Polymer Constructed from Three Distinct Interwoven Helical Motifs Interconnected by One-Dimensional Chains [J]. Inorg. Chem., 2008, 47(21): 9754-9756.
    [41] Gao Q, Wu M Y, Chen L, et al. A chiral twofold interpenetrated diamond-like 3D In(III)coordination network with 4,4’,4’’-phosphoryltribenzoate [J]. Inorg. Chem. Commun., 2009, 47(12): 1238–1241.
    [42] Liu Q K, M J P, D Y B. Reversible Adsorption and Separation of Aromatics on CdII-Triazole Single Crystals [J]. Chem.- Eur. J., 2009, 15(40): 10364-10368.
    [43] Li S L, Lan Y Q, Qin J S, et al. Assembly of 3D Metal-Organic Frameworks Based on Different Helical Units: Chiral and Achiral Structures Constructed by Length-Modulated N-Donor Ligands [J].Cryst. Growth Des., 2009, 9(9): 4142-4146.
    [44] Veronica P G, Andres V, Novak M A, et al. Crystal structure and magnetic properties of a new chiral manganese(II) three-dimensional framework: Na(3)[Mn(3)(HCOO)(9)] [J].Inorg. Chem., 2009, 48(11): 4737-42.
    [45] Liu L, Huang S P, Yang G D, et al. Zn[Htma][ddm]: An Interesting Three-Dimensional Chiral Nonlinear Optical-Active Zinc-Trimesate Framework [J]. Cryst. Growth Des., 2010, 10(2): 930-936.
    [46] Lin J D, Long X F, Lin P, Du, et al. A Series of Cation-Templated, Polycarboxylate-Based Cd(II) or Cd(II)/Li(I) Frameworks with Second-Order Nonlinear Optical and Ferroelectric Properties [J].Cryst. Growth Des., 2010, 10(1): 146-157.
    [47] Liang Y C, Hong M C, Zhang W J. et al. Preparations, Structures, and Magnetic Properties of a Series of Novel Copper(II)?Lanthanide(III) Coordination Polymers via Hydrothermal Reaction [J].Inorg. Chem., 2001, 40(18): 4574-4582.
    [48] Bronisz R. Synthesis and characterisation of coordination polymers of Cuii and Znii with 1,3-bis(1,2,3,4-tetrazol-2-yl)propane-rotational freedom of the donor group favours structural diversification. [J].Eur. J. Inorg. Chem., 2004, 18: 3688-3695.
    [49] Merz C, Desciak M, Zubieta J A. Effect of tether length and counterion in cobalt-dipyridine coordination polymers prepared via hydrothermal methods [J].Inorg. Chim. Acta, 2004, 357(11): 3331-3335.
    [50] Fang Q R, Zhu G S, Qiu S L. Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks [J].Dalton Trans. 2004, 14: 2202-2207.
    [51] Lee I S, Shin D M, Chung Y K. Novel Supramolecular Isomerism in Coordination Polymer Synthesis from Unsymmetrical Bridging Ligands: Solvent Influence on the LigandPlacement Orientation and Final Network Structure [J].Chem.- Eur. J., 2004, 10(13): 3158-3165.
    [52] Ma L F, Wang L Y, Lu D H, et al. Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System [J]. Cryst. Growth Des., 2009, 9(4): 1741-1749.
    [53] Tan Y X, Meng F Y, Wu M C, et al. Two Pb(II) dicarboxylates constructed by rigid terephthalate or flexible (+)-camphorate with different 3D motif based on cooperative effect of steric hindrance of ligand and lone pair electrons [J]. J. Mol. Struct., 2009, 928(1-3): 176-181.
    [54] Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-Assembly of Cd(II)-Containing Coordination Polymers Based on a Novel Flexible Tetrakis(imidazole) Ligand [J]. Cryst. Growth Des., 2010, 10(2): 995-1016.
    [55] Su Z, Cai K, Fan J, et al. Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions [J].CrystEngComm 2010, 12(1): 100-109.
    [56] Zhang L P, Ma J F, Yang J, et al. Series of 2D and 3D Coordination Polymers Based on 1,2,3,4-Benzenetetracarboxylate and N-Donor Ligands: Synthesis, Topological Structures , and Photoluminescent Properties [J].Inorg. Chem., 2010, 49(4): 1535-1550.
    [57] Borsari M, Cascarano G, Giacovazzo C. Coordination properties of N-p-tolylsulfonyl-L-glutamic acid toward metalII Part 2. Solution study on binary and ternary 2,2'-bipyridine containing systems [J].Polyhedron, 1999, 18(4): 1983-1989.
    [58] Sheldrick G M. SHELXS-97, a Program for X-Ray Crystal Structure Solution, and SHELXL-97, a Program for X-ray Structure Refinement. University of G?ttingen, Germany. 1997
    [59] Sheldrick G M. SADABS, A Program for Empirical Absorption Correction of Area detector Data, University of G?ttingen, Germany, 1997.
    [60] Anokhina E V, Jacobson A J. [Ni2O(l-Asp)(H2O)2]·4H2O: A Homochiral 1D Helical Chain Hybrid Compound with Extended Ni?O?Ni Bonding [J].J. Am. Chem. Soc., 2004, 126(10): 3044-3045.
    [61] Borsari M, Menabue L, Saladini M. Amide nitrogen co-ordination of CoII and NiII internary 2,2-bipyridine-containing systems. A solution and solid-state study [J]. J. Chem. Soc., Dalton Trans., 1996, 22(22): 4201-4206.
    [62] Wasson A E, LaDuca R L. Hydrothermal synthesis, crystal structures, and properties of two 3-D network nickel nicotinate coordination polymers: [Ni4(μ-H2O)2(nicotinate)8·2H2O] and [Ni2(H2O)2(nicotinate)4(4,4′-bpy)] [J].Polyhedron, 2007, 26(5): 1001-1011.
    [63] Feller R K, Cheetham A K. Polytypism, homochirality, interpenetration, and hydrogen-bonding in transition metal (Mn(II), Ni(II), Cu(II), Zn(II)) 5-hydroxyisophthalate coordination polymers containing 4,4-bipyridyl [J].Dalton Trans. 2008, 15: 2034-2042.
    [64] Zeng M H, Gao S, Chen X M. A novel 3D coordination polymer containing pentacoordinate cobalt(II) dimers with antiferromagnetic ordering [J].Inorg. Chem. Commun., 2004, 7(7): 864-867.
    [65] Mir M H, Kitagawa S, Vittal J J. Two- and Three-fold Interpenetrated Metal-Organic Frameworks from One-Pot Crystallization [J].Inorg. Chem. 2008, 47(17) : 7728-7733.
    [66] Sasaji I, Hara M, Tatsumi S, et al. [J].US Pat. 3 213 106, 1965.
    [67] Thushari S, Cha J A K, I. Williams D. Microporous chiral metal coordination polymers: hydrothermal synthesis, channel engineering and stability of lanthanide tartrates [J].Chem. Commun., 2005, 44: 5515-5517.
    [68] Turner A, Hix G B. Hydrothermal synthesis and crystal structure of two Co phosphonates containing trifunctional phosphonate anions: Co3(O3PCH2NH2CH2PO3)2 and Co3(O3PCH2-NC4H7-CO2)2·5H2O [J].Dalton Trans., 2003, 7: 1314-1319.
    [69] Abourahma H, Bodwell G J, Zaworotko M J. Coordination Polymers from Calixarene-Like [Cu2(Dicarboxylate)2]4 Building Blocks: Structural Diversity via Atropisomerism. [J]. Cryst. Growth Des., 2003, 3(4): 513.
    [70] Lo S M F, Chui S S Y, Williams I D. Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I?Copper-II Dimer Units: [Cu4{1,4-C6H4(COO)2}3(4,4′-bipy)2]n [J].J. Am. Chem. Soc. 2000, 122(26): 6293-6294.
    [71] Buijs W, Comba P, Schickedanz M. The Role of the Apical Donor in the Decomposition of Copper(II) Benzoate under DOW-Phenol Conditions [J].Eur. J Inorg. Chem. 2001, 12(7): 3143-3149.
    [72] Shi C Y, Ge C H, Gao E J, et al. Solvent-induced formation of two novel mononuclearand dinuclear copper(II) complexes: Synthesis, structure and properties [J].Inorg. Chem. Commun., 2008, 11(6): 703-706.
    [73] Noro S I, Horike S, Nakamura T. Flexible and Shape-Selective Guest Binding at CuII Axial Sites in 1-Dimensional CuII?1,2-Bis(4-pyridyl)ethane Coordination Polymers [J].Inorg. Chem., 2006, 45(13): 9290-9300.
    [74] Hwang I C, Ha K. Crystal structure of bis(2,2'-bipyridine -N,N')dibromomanganese(II), MnBr2(C10H8N2)2 [J]. Z. Kristallogr. - New Cryst. Struct., 2007, 222(3): 209-210.
    [75] Chen X M, Zhang S H, Hong Z H, et al. Synthesis and crystal structures of 3D supramolecular compounds: [M(4,4'-bipy)2(H2O)4](4,4'-bipy)2(3,5-daba)2·8H2O (M = Zn, Mn ) [J]. J. Coord. Chem., 2008, 61(16): 2563-2569.
    [76] Du M, Zou R Xu Q Q. Hydrothermal synthesis, crystal structures and properties of new FeII, CoII, NiII, and ZnII complexes with 6-quinolinecarboxylate: Interplay of coordinative and noncovalent interactions [J].Inorg. Chim. Acta, 2008, 361(5): 1555-1561.
    [77] Wei G H, Yang J, Ma J F. Syntheses, structures and luminescent properties of zinc(II) and cadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands [J].Dalton Trans. 2008, 23: 3080-3092.
    [78] Wang X L, Qin C, Wang E B. Syntheses, Structures, and Photoluminescence of a Novel Class of d10 Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures [J].Inorg. Chem., 2004, 43(6): 1850-1856.
    [79] Wong P T, Brewer D J. Canad. Nature of the coordination bond in metal complexes of substituted pyridine derivatives. IV. Skeletal vibration spectra and the substituent effect upon the coordination bond of the pyridine complex of zinc(II) ion [J] Can. J. Chem. 1969, 47(24): 4589-4597.
    [80] Corradi A B, Lusvardi G, Saladini M. Coordination properties of N-p-tolylsulfonyl--glutamic acid toward metalII: Part 1. Crystallographic study on ZnII and CdII complexes [J].Polyhedron, 1999, 18(14): 1975-1982.
    [81] Silveira V R, Pedrosa A M G, Batista M K S, et al. A thermoanalytical study of zinc methanesulfonate urea, imidazole and 2,2-dithiobis(pyridine-N-oxide) complexes. [J].Thermochimica Acta, 2004, 414(1): 91–94.
    [82] Monfort M, Ribas J, Solans X, et al. Synthesis, Crystal Structures, andMagnetostructural Correlations in Two New One-Dimensional Nickel(II) Complexes with Azido as Bridging Ligand. Effect of Temperature [J].Inorg. Chem. 1996, 35(26) : 7633-7638.
    [83] Coomber A T, Beljonne D, Friend R H. Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2H2O. [J].Nature 1996, 380(6570): 144-146.
    [84] Chen B Q, Hong M C. A novel chiral framework constructed through three-fold interpenetration of (4,4) nets of Ni(II)-muconate-4,4′-bipyridine [J].Inorg. Chem. Commun., 2006, 9(4): 371-374.
    [85] Boudalis A K. CoII Chemistry of 2,6-Bis(2-pyridylcarbonyl)pyridine: An Icosanuclear Co Cluster Exhibiting Superparamagnetic Relaxation [J].Angew. Chem. Int. Ed., 2006, 45(3): 432-435.
    [86] Ni C L. Magnetic behavior within a new Ni(mnt)2-based molecular solid containing 1-(2′-fluorobenzyl)isoquinolinium [J].Inorg. Chem. Commun., 2005, 8(12): 1105-1108.
    [87] Khan O. [J].Molecular Magnetism, VCH Publishers, New York, 1993.
    [88] Delgado S. Structural diversity of copper complexes with angular and linear dipyridyl ligands [J].Polyhedron, 2007, 26(12): 2817–2828.
    [89] Agterberg F P W, Kluit H A J P, Driessen W L, et al.Dinuclear Paddle-Wheel Copper(II) Carboxylates in the Catalytic Oxidation of Carboxylic Acids. Unusual Polymeric Chains Found in the Single-Crystal X-ray Structures of [Tetrakis(μ-1-phenylcyclopropane-1- carboxylato-O,O‘)bis(ethanol-O)dicopper(II)] and catena-Poly[[bis(μ-diphenylacetato- O:O‘)dicopper](μ3-diphenylacetato-1-O:2-O‘:1‘-O‘)(μ3-diphenylacetato-1-O:2-O‘:2‘-O‘)] [J].Inorg. Chem. 1997, 36(20): 4321-4328.
    [90] Zhao B, Gao H L, Cheng P, et al. A Promising MgII-Ion-Selective Luminescent Probe: Structures and Properties of Dy-Mn Polymers with High Symmetry [J].Chem.-Eur.J., 2006, 12(1): 149-158.
    [91] Zhao B, Cheng P, Liao D Z. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes [J].J.Am.Chem.Soc., 2004, 126(47): 15394-15395.
    [92] Cheng Y X, Wang Y C, Tao Z D, et al. Study on Fluorescent Properties of Europium(III) Ternary Complexes [J].Chinese J. Inorg. Chem. (WujiHuaxue Xuebao), 2000, 16(3): 523-526.
    [93]黄月芳,张培,黄林,等.邻苯二甲酰氨基酸的合成及晶体结构[J].精细化工,2008,25(7).
    [94] Devereux M, Leonl M M V, Wikaira J. Synthesis and Biological Activity of Manganese (II) Complexes of Phthalic and Isophthalic Acid: X-Ray Crystal Structures of [Mn(ph)(Phen)2(H2O)]·4H2O, [Mn(Phen)2(H2O)2]2(Isoph)2(Phen)·12H2O and {[Mn(Isoph)(bipy)]4·2.75biby}n(phH2- = Phthalic Acid; isoph = Isophthalic Acid; phen = 1,10-Phenanthroline; bipy = 2,2-Bipyridine) [J].Metal Based Drugs, 2000, 7(5): 275-288.
    [95] Wu C D, Ma L Q, Lin W B. Hierarchically Ordered Homochiral Metal?Organic Frameworks Built from Exceptionally Large Rectangles and Squares [J].Inorg. Chem., 2008, 47(24): 11446-11448.
    [96] R K, Udai P S. Molecular structure, photophysical and thermal properties of samarium (III) complexes [J]. J. Mol. Struct., 2008, 875(1-3): 427-434.
    [97] Ferraro J R, Walker W R. Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds [J]. Inorg. Chem., 1965, 4(10): 1382-1386.
    [98]张琢,潘文丽.配合物Eu(Sal)2(phen)2(NO3)的合成及荧光性能的研究[J].精细与专用化学品, 2007, 15(21): 15-17.
    [99]杨红,韩新利,张智慧,等.丙二酸根-1,10-邻菲罗啉合镍(Ⅱ)配合物的合成、晶体结构及光谱性质[J].无机化学学报, 2007, 23(3): 513-516.
    [100] Zhang C X, Zhang Y Y, Zhang H L, et al. Synthesis, structures and magnetic properties of nickel(II), manganic(II) and zinc(II) complexes containing pyridyl-substituted nitronyl nitroxide and tris(2-benzimidazolymethyl)amine [J]. Inorg. Chim. Acta, 2009, 362(15): 5231–5236.
    [101] Huang Y Q, Cheng P. Crystal structure, TGA and magnetic properties of a novel 2D coordination polymer [Mn2(btr)(μ-ox)2(H2O)2]·2H2O [J]. Inorg. Chem. Commun., 2008, 11(1): 66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700