基于先进辨识的控制策略研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在控制系统设计与分析中,建模、控制和状态估计构成了其三大重要组成部分。在经典控制理论中,由于涉及到的控制对象一般为单输入单输出系统,所以传递函数便成为描述控制对象运动规律最适用的模型之一。系统辨识的主要工作集中于发展基于最小二乘法、曲线拟合和极大似然估计等点估计理论的辨识算法。系统辨识作为控制理论中的重要组成部分,为控制设计提供模型基础,同时系统辨识理论可渗透于先进控制理论中,仅根据观测数据直接进行控制器设计。因此,本课题在系统辨识理论的基础上,从系统辨识的角度研究先进控制方法,针对精密伺服控制系统和无人机航迹规划,展开对系统辨识和先进控制理论在其中的应用研究。
     针对精密伺服控制系统中的典型产品—转台,研究利用系统辨识的方法对转台控制系统中的三环传递函数进行辨识估计。在开环条件下转台速度环传递函数的递推辨识中,引入递推辨识奇异值分解算法,可获得较好的数值特性,能提高系统参数实时辨识的精度;对于输入和输出观测信号中都带有外界干扰的白噪声时,采用非线性可分离的最小二乘法可获得模型参数的一致性估计。而当输出观测噪声为有色噪声时,在辅助变量算法的基础上结合偏差补偿算法进行推广得到偏差补偿辅助变量辨识算法;对转台位置闭环系统的辨识,联合自回归滑动平均模型辨识的辅助变量法和用于状态空间模型的子空间辨识方法,得到闭环子空间最优辅助变量辨识法。
     针对精密伺服控制中被控对象的数学模型未知时控制器的设计问题,研究一种模型参考自适应控制—基于数据驱动的虚拟参考反馈校正控制。该方法有效地解决闭环系统中未知对象模型下参数化控制器的设计,将控制器设计问题转化为参数辨识优化过程;针对闭环非线性系统中的控制器为一非线性函数,采用虚拟参考反馈校正控制的设计思想,根据此时控制器的输入输出观测数据构造一基于输出数据的线性仿射函数,通过最小化逼近误差,利用系统辨识的参数估计方法求取线性仿射函数中可调参数权值。研究虚拟参考反馈校正控制在转台位置环跟踪回路中的应用,由虚拟参考反馈校正控制得到的PID参数可使得PID控制系统的动态性能得到改进,具有跟踪不同频率信号的能力;针对转台中的非线性摩擦力矩,采用非线性函数的线性仿射函数逼近,便于控制之前的建模。
     针对精密伺服控制对外部干扰的抑制问题,考虑闭环系统中对象模型存在不确定性因素,从系统辨识的角度研究内模控制中的内部模型参数的递推辨识,并对内模控制系统中的闭环试验信号进行设计;在考虑外部干扰作用下,引入内模H无穷控制达到抑制外部干扰的目的。根据对转台机理的分析,采用内模H无穷控制策略对其速率回路的校正器进行设计,表明该方法可用于同时对稳定系统和不稳定系统进行控制器设计,达到预先指定的控制性能指标。
     针对滚动时域控制的优化目标函数中,需要使用到输出预测值的显式表达式。根据系统辨识中的子空间辨识理论,利用状态空间形式下过去和现在的输入输出数据构造将来时刻的输出预测值,为联合系统辨识和控制器设计,在子空间辨识的基础上,研究了一种新颖的滚动时域子空间预测控制。该控制方法可自动校正模型预测控制中的系统参数,克服了传统的线性二次高斯最优控制中繁琐的设计过程,且不依赖于任何控制器的先验信息。在考虑带有约束条件时,利用椭球优化算法来迭代地产生一系列体积逐渐减小的椭球序列,该序列最终能收敛到一个最优解,在算法的基础上推导了椭球优化算法达到收敛时所需要迭代次数的一个上界,可以用于颤振的主动抑制;从优化问题解存在的最优性角度考虑非线性系统的滚动时域控制,分别从有或无集合约束条件下,利用凸优化理论中的可分离定理推导出该优化问题是否存在全局最优解的充要条件。针对无人机航迹规划中的数学优化问题,使用滚动时域控制和椭球迭代算法进行求解最优控制输入序列。
     上述研究内容的完成,既为解决各种先进控制问题提供了一种新的方法,又为实现精密伺服系统的控制和无人机航迹规划提供了一种结合系统辨识与先进控制方法的有效控制手段,有利于提高控制性能。
In control system design and analysis, model, control and state estimation are the three main bodies.And in the classical control theoty, because the considered control objects are always single inputsingle output systems, then the transfer function is the most suitable model to describe the controlobject’s law of motion. The main work of system identification is to develop some identificationalgorithms based on some point estimation theory such as least square algorithm, maximum likelihoodtechnique and curve fitting. The system identification theory is the main part in the whole controltheory, because it can provide the mdel for the control design. The most important is that the systemidentification theory can penetrate in the advanced control theory and directly design a controller basedon input-output measurement datas. Therefore, we consider three advanced control methods from thepoint of the system identification theory. For the precision servo control system and UAV’s pathplanning, researches on system identification and advanced control theory are carried out in this paper.
     For the precision servo control system’s typical product such an turnplate, the three kinds of transferfunctions exist in turnplate systems are identified and estimated using system identification methods.When considered the recursive identification of the turnplate veloocity loop’s transfer function underopen loop condition, we introduce a realize form in the recursive identification methods based onsingular value decomposition. The proposed method can not only obtain good nunerical property butalso improve the precision in real time identify system parameters. When the observed input-outputdatas are all corrupted with the white noise, the nonlinear separable least square algorithm is adopted toobtain the consistent estimations about eh model parameters. When the output noise is modeled as thecoloured noise, we extend the biased compensated method and instrumental variable methos to get thebias compensaten insturmental variable method. When identified the turnplate’s position closed loop,we combine the instrumental variable method in ARMA identification and subspace identification instate space model to propose a new closed loop subspace optimal instrumental variable method.
     For the problem of the controller designed about the unknown model in the precision servo controlsystem, we diccuss a model reference adaptive control-virtual reference feedback tuning controlVRFT only based on data deriven. This control design method can effectively solve how to design theparametric controller about the unknown object’s model in closed loop system. It regulates th problemof designing controller into a procedure of parameters optimization. As the controllere’s expression inthe nonlinear closed loop is a nonlinear function, by using the idea of the VRFT, we construct a linearaffine function of the output datas, based on the parameter estimation iterative method. Through mixmizing the approximation error, we can seek the adjunct weights in the linear affine function.When applied the VRFT into the turnplate position tracking loop, the dynamic property of the PIDcontroller which is given from the VRFT has been improved and the tracking loop has the ability oftracking different frequency signal. For the nonlinear friction moment, we can also model thenonlinear nonlinear friction moment as a linear affine function, so as to be benefit to control.
     For the problem of how to suppress the external disturbance, we study the model parametersrecursive identification for inteernal model control, When considering some uncertainty factors of theobject model in the closed loop. The optimal closed loop input signal for the internal model control isalso designed. Under the effect of the external disturbance, we introduce a internal model H infinitycontrol to suppress the disturbance. After analysing the turnplate’s structure, the internal model Hinfinity control is applied to analyse the controller in the velocity loop. It shows that the method cannot only be used to design stable system and un stable system simulately but also attain the prescribedthe control performance index.
     For the target function in the receeding horizon control, the explict expression of the outputpredictions are necessary. Then we construct the future output predictions based on the pastandcurrent input-output datas. A novel subspace predictive control based on subspace identification isdiscussed for joint system identification and control design. This combination enables automaticallytuning the parameters in model predictive control and avoids many steps in the LQG-controller design.It is independent of any controller prior information. When considered the constrain conditions, anellipsoid optimization algorithm is proposed to generate a sequence of ellipsoids with decreasingvolume. An upper bound on the maximum number of possible iterates steps is derived. It is used inthe flutter active control. The receeding horizon control of the nonlinear system is also discussed toconsider its optimization solution. We analyse this optimization problem from two aspects: setconstraint and no set constraint. Furthermore, we derive the necessary and sufficient condition ofwhether it has global optimization solution using separable theorem from convex theory. For themathematic optimization problem in UAV’s path planning, the optimal control input sequence is givenusing receeding horizon control and ellipsoid iterative optimization algorithm.
     Acomplishment of above researches will supply a novel method for solving variety advancedcontrol problems, and supply an effective technique combined with system identification andadvanced control methods for precision servo control system and UAV’s path planning, which willimprove control performance.
引文
[1]袁亚湘,孙文瑜.最优化理论.北京:科学出版社,2010.
    [2]周克敏.鲁棒与最优控制理论.北京:国防工业出版社,2006.
    [3]叶尔骅,张德平.概率论与随机过程.北京:科学出版社,2004.
    [4]戴华.矩阵论.北京:科学出版社,2003.
    [5]周彤.面向控制的系统辨识导论.北京:清华大学出版社,2002.
    [6]方崇智,萧德云.过程辨识.北京:清华大学出版社,1988.
    [7]郑大钟.线性系统理论.北京:清华大学出版社,2001.
    [8]蔡金狮.无人机系统辨识.北京:宇航出版社,2007.
    [9]唐炜,史忠科,李洪超.飞机颤振模态参数辨识的频域广义整体最小二乘算法.控制与决策,2006,21(7):726-729.
    [10]张立群,邵惠鹤.基于内模控制的系统辨识实验信号设计.系统工程与电子技术,2004,26(10):1465-1467.
    [11]张立群,邵惠鹤.基于最小方差控制的闭环辨识信号设计.上海交通大学学报,2004,38(4):521-523.
    [12]申培萍.全局优化方法.北京:科学出版社,2006.
    [13]王建宏,王道波.基于遗忘因子算法的无人机颤振模态参数辨识.中国空间科学技术,2009,6(12):7-13.
    [14]王建宏,王道波.多个未知时延的MISO系统的递推辨识.控制与决策,2010,25(1):93-98.
    [15]王建宏,王道波.子空间预测控制中的椭球优化算法及其应用.应用科学学报,2010,28(4):924-929.
    [16]王建宏,王道波.机载稳定跟踪转台速率回路的内模H无穷控制.电光与控制,2011,18(1):20-24.
    [17]王建宏,王道波,谢勇.稳定跟踪转台速率回路的内模控制.伺服控制,2010,14(6):37-41.
    [18]王建宏,王道波.递推辨识中的奇异值分解方法.航空计算技术,2009,39(4):14-17.
    [19] Steven. M. Kay.统计信号处理-估计与检测理论.北京:电子工业出版社,2006.
    [20]王建宏,王道波.基于全局非线性可分离的最小二乘法的飞机颤振模态参数辨识.振动与冲击,2011,30(2):210-213.
    [21]王建宏,王道波.飞机颤振模态参数辨识的期望最大化法.南昌航空大学学报,2010,24(2):35-40.
    [22]蔡艳利.基于滚动时域控制的无人直升机飞行控制研究.南京航空航天大学硕士学位论文,2009.
    [23]林艳春.多变量内模控制方法研究.北京化工大学硕士学位论文,2006.
    [24] Er Wei Bai. Nonlinear-parametric nonlinear system identification: an asymptotic minimum meansquared error estimator. IEEE Transaction on Automatic Control,2010,55(7):1615-1626.
    [25] Er Wei Bai, Manfred Deistler. An interactive term approach to non-parametric fir nonlinearsystem identification. IEEE Transaction on Automatic Control,2010,55(8):1952-1957.
    [26] Er Wei Bai. Non-parametric nonlinear system identtification: a data-deriven orthogonal basisfunction approach. IEEE Transaction on Automatic Control,2008,53(11):2615-2627.
    [27] Er Wei Bai. Bounded error parameter estimation: a sequential analysis center approach. IEEETransaction on Automatic Control,1999,44(6):1107-1117.
    [28] Er Wei Bai, Li Qiu. Unfalsified weighted least squares ertimates in set-membership identification.IEEE Transaction on Automatic Control,1998,45(1):41-49.
    [29] Er Wei Bai, Johan Reyland. Toward identification of Wiener systems with the least amount of apriori information: IIR cases. Automatica,2009,45(4):956-964.
    [30] Er Wei Bai. A blind approach to the Hammerestein-Wiener model identification. Automatica,2002,38(6):967-979.
    [31] Er Wei Bai, Roberto Tempo. Identification of IIR nonlinear systems without prior structuralinformation. IEEE Transaction on Automatic Control,2007,52(3):442-457.
    [32] Er Wei Bai. An optimal two-stage identification algoorithm for Hammerstein-Wiener nonlinearsystem. Automatica,1998,34(1):333-338.
    [33] Er Wei Bai, Johan Reyland. Toward identification of Wiener systems with the least amount of apriori information on the nonlinearity. Automatica,2008,44(4):910-919.
    [34] Er Wei Bai, Minyue Fu. A blind approach to Hammerstein model identification. IEEETransaction on Automatic Control,2002,50(7):1610-1619.
    [35] Er Wei Bai. Identification of linear systems with hard input nonlinearities of known structure.Automatica,2002,38(5):853-860.
    [36] Er Wei Bai, Minyue Fu, Yinyu Ye. Convergence results of the analytic center estimator. IEEETransaction on Automatic Control,2000,45(3):569-572.
    [37] Er Wei Bai, Roberto Tempo. Recursive system identification in the presence of noise and modeluncertainties. System&control,1997,32(1):57-62.
    [38] Er Wei Bai, Hyonyong Cho. Optimization with few violated constraints for linear bounded errorparameter estimation. IEEE Transaction on Automatic Control,2002,47(7):1067-1076.
    [39] Ljung L. System identification: Theory for the user. New Jersey: Prentice Hall,1999.
    [40] Ljung L, Soderstrom T. Theory and practice of recursive identification. Cambridge Mass,1983.
    [41] Goodwin G C. Experiment design for system identification. Oxford: Pergamon Press,1987
    [42] Dimitri P. Bertekas. Convex optimization theory. Athena Scientic,2009.
    [43] Tohru Katayama. Subspace system identification. Berlin: Springer-Verlag,2005.
    [44] Boyd S, Barratt C. Linear controller design: linits of performance. New Jersey: PrenticeHall,1991.
    [45] Boyd S, Ei Ghaoui. Linear matrix inequalities in systems and control theory. Philadephia: SIAM,1994.
    [46] Pintelon R, Schoukens J. System identification: a frequency domain approach. New York: IEEEPress,2001.
    [47] Boyd S, L Vandenberghe. Convex optimization. UK:Cambridge university press,2008.
    [48] T Soderstrom. System identification. New Jersey: Prentice Hall,2001.
    [49] Jorge Nocedal, Stephen J Wright. Numerical optimization. Berlin: Springer-Verlag,2002.
    [50] J Frederic Bonnans, J Charles Gilbert. Numerocal optimization: theory and practical aspect.Berlin: Springer-Verlag,2006.
    [51] Stephen J Wright. Primal dudl interior point methods.Illinois: Argonne national laboratory,1997.
    [52] W H Kwon, S Han. Receding Horizon control-model predictive control for state models. Berlin:Springer-Verlag,2002.
    [53] Harold J Kushner, G Geoge Yin. Stochastic approximation and recursive algorithms andapplications. Berlin: Springer-Verlag,2008.
    [54] G Gerge Yin. Discrete-time markov chains-two time scale methods and applications. Berlin:Springer-Verlag,2009.
    [55] Goodwin G C, De Dona J. Constrained control and estimationL: an optimization approach.Berlin: Springer-Verlag,2005.
    [56] Ben Tal A, El Ghaoui. Robust optimization. Princeton and Oxford: Princeton University Press,2009.
    [57] L Y Wang, G G Yin. System identification with quantized observation. Boston: Birkhauser,2010.
    [58] Goodwin G C,Graebe S F. Control system desige. Upper Saddle river NL: Prentice Hall,2001
    [59] Arkadi Nemirovski. Lectures on model convex optimization. Philadelphia: SIAM,2001.
    [60] M Prandini, M C Campi. A new recursive identification algorithm for singularity free adaptivecontrol. System&Control,1998,34(4):177-183.
    [61] M.C.Campi. Virtual reference feedback tuning: a direct method for the design of feedbackcontrolllers. Automatica,2002,38(8):1337-1346.
    [62] Guido. Guardabassi. Virtual reference direct method: An off-line approach to data-based controlsystem design. IEEE Transactions of Automatic Control,2002,45(5):954-960.
    [63] A. Lechini. M.C.Campi. Virtual reference feedback tuning for two degrees of freedomcontrolleers. Internation Journal of Adaptive Control and Signal Processing,2002,16(10):355-371.
    [64] M.C.Campi. A. Lechini. An application of the Virtual Reference Feedback Tuning method to aBenchmark problem. European Journal of Control,2003,9(2):66-76.
    [65] M.Gevers. Ljung, L. Asymptotic variance expressions for closed-loop identification. Automatica,2001,37(4):781-786.
    [66] Marco,Campi. An iterative identification method for linear continuous time systems. IEEETransaction on Automatic Control,2008,53(7):1661-1669.
    [67] Marco C Campi, Sergio M Savaresi. Direct nonlinear control desogn: the virtural referencefeedback tuning approach. IEEE Transaction on Automatic Control,2006,51(1):14-27.
    [68] Marco C Campi, Erik Weyer. Non-asymptotic confidence sets for the parameters of lineartransfer functions. IEEE Transaction on Automatic Control,2010,55(12):2708-2720.
    [69] Marco C Campi, Sangho Ko. Non-asymptotic confidence regions for model parameters in thepresence of unmodelled dynamics. Automatica,2009,45(10):2175-2186.
    [70] M C Campi, Su Ki Ooi. Non-asymptotic quality assessment of generalised FIR models withperiodic inpunt. Automatica,2004,40(12):2029-2041.
    [71] S Garatti, M C campi. The asymptotic model quality assessment of instrument variableidentification revisited. Systems&Control,2006,55(6):494-500.
    [72] Erik Weyer, M C Campi. Non-asymptotic confidence ellipsoids for the least-squares estimate.Automatica,2002,38(9):1539-1547.
    [73] M C Campi, G Calafiore. Interval predictor models: identification and reliability. Automatica,2009,45(2):382-392.
    [74] Marco Dalai, M C Campi. Parameter identification for nonlinear systems: guaranteed confidenceregion through LSCR. Automatica,43(8):1418-1425.
    [75] M C Campi, E Weyer. Guaranteed non-asymptotic confidence regions in system identification.
    [76] M C Campi, P R Kumar. Learing dynamical systems in a stationary environment. Systems&Control,1998,34(3):125-132.
    [77] Erik Weyer. Finite sample properties of system identification of ARX models under mixingconditions. Automatica,2000,36(10):1291-1299.
    [78] S Garatti, M C Campa. Assessing the quality of identified models through the asymptotictheory-when is the result reliable. Automatica,2004,40(8):1319-1332.
    [79] M C Campa, G Calafiore. Notes on the scenario design approach. IEEE Transaction onAutomatic Control,2009,54(2):382-385.
    [80] Jacob Roll, Lennart Ljung. Nonlinear system identification via direct weight optimization.Automatica,2005,41(3):475-490.
    [81] Jacob Roll. Piecewise linear solution paths with application to direct weight optimization.Automatica,2008,44(8):2745-2753.
    [82] Jacob Roll, Lennart Ljung. Identification of piecewise affine systems via mixed-integerprogramming. Automatica,2004,40(1):37-50.
    [83] Ingela Lind, Lennart Ljung. Regressor selection with the analysis of variance method.Automatica,2005,41(4):693-700.
    [84] Ingela Lind, Lennart Ljung. Regressor and structure selection in NARX models using astructured ANOVA approach. Automatica,2008,44(2):383-395.
    [85] Ohlsson H, Ljung L. Segmentation of ARX-models using sum-of-norms regularization.Automatica,2010,46(6):1107-1111.
    [86] D Bauer, L Ljung. Some facts about the choice of the weighting matrices in Larimore type ofsubspace algorithms. Automatica,2002,38(5):763-773.
    [87] Lennart Ljung. Perspective of system identification. Annual Reviews in Control,2010,34(1):1-12.
    [88] Anna Hagedblad, Lennart Ljung. Maximum likelihood identification of Wiener models.Automatica,2008,44(11):2697-2705.
    [89] M Enqvist, L ljung. Linear approximation of nonlinear FIR systems for separable input processes.Automatica,2005,41(3):459-473.
    [90] Alexander V, Lennart Ljung. Asymptotically optimal smppthing of averaged LMS estimates forregression parameter tracking. Automatica,2002,38(10):1287-1293.
    [91] Markus Gerdin, Lennart Ljung. On parameter and state estimation for linear differential algebraicequations. Automatica,2007,439):416-425.
    [92] Urban Forssel, Lennart Ljung. Closed-loop identification revisited. Automatica,1999,35(7):1215-1241.
    [93] Urban Forssel, Lennart Ljung. Some results on optimal experiment design. Automatica,2000,36(5):749-756.
    [94] Jonas Gillberg, Lennart Ljung. Frequecy-domain identification of continuous-time ARMAmodels from sampled. Automatica,2009,45(7):1371-1378.
    [95] Lennart Ljung, Adrian Will. Issues in sampling and estimating continuous-time models withstochastic disturbance. Automatica,2010,46(5):925-931.
    [96] Roberto Diversi, Roberto Guidorzi. Maximum likelihood identification of noisy input-outputmodels. Automatica,2007,43(6):464-472.
    [97] S. Joe Qin, Weilu Lin, Lennart Ljung. A novel subspace identification approach with enforcedcausal models. Automatica,2005,41(12):2043-2053.
    [98] Liang-Liang Xie, Lennart Ljung. Variance expressions for spectral estimated using autoregressions. Journal of Econpmetrics,2004,118(2):247-256.
    [99] Jiandong Wang, Qinghua Zhang, Lennart Ljung. Revisting Hammerstein system identificationthrough the two stage algorithm for bilinear parameter estimation. Automatica,2009,45(11):2627-2633.
    [100] R.Pintelon, J. Schoukens. Frequency domain maximum likelihood estimation of linear dynamicerror in variables models. Automatica,2007,43(3):621-630.
    [101] Zi Jiang Yang, Hideto Iemura. Identification of continuous time systems with multiple unknowntime delays by global least squares and instrumental variabl models. Automatica,2007,43(8):1257-1264.
    [102] Kaushik Mahata, R Pintelon. On parameter estimation using nonprametric noise models. IEEETransaction on Automatic Control,2006,51(10):1602-1612.
    [103] Kaushik Mahata, Torsten Soderstrom. Large sample properties of separable nonlinear leastsquares estimators. IEEE Transaction on Signal Processing,2004,52(6):1650-1658.
    [104] Mei Hong, Torsten Soderstrom. Relations between bias-elimination least squares, the Frischscheme and extend compensated least squares methods for identifying error in variables system.Automatica,2009,45(3):277-282.
    [105] R Pintelon, Mei Hong. Asymptotic uncertainty of transfer function estimate usingnonparametric noise models. IEEE Transaction on Instrumention and Measurement.2007,56(6):2599-2605.
    [106] Mei Hong, Torsten Soderstrom. Accuracy analysis of bias-eliminating least squares for error invariables systems. Automatica,2007,43(6):1590-1596.
    [107] R Pintelon, J Schoukens. Uncertainty of transfer function modelling using prior estimated noisemodels. Automatica,2003,39(4):1721-1733.
    [108] R Pintelon. Frequency domain subspace system identification using non-parametric noisemodels. Automatica,2002,38(5):1295-1311.
    [109] R Pintelon, J Schoukens. Some peculiarities of identification in the presence of model errors.Automatica,2002,38(7):1683-1693.
    [110] R Pintelon, J Schoukens. Box-Jenkins identification revisted-part I. Automatica,2006,42(1):63-75.
    [111] R Pintelon, J Schoukens. Box-Jenkins identification revisted-part II: Applications. Automatica,2006,42(1):77-84.
    [112] R Pintelon, J Schoukens. Box-Jenkins identification revisted-part III: multivariable systems.Automatica,2007,43(5):868-875.
    [113] J Schoukens, R Pintelon. Box-Jenkins alike identification using nonparametric noise models.Automatica,2004,40(10):2083-2089.
    [114] J Schoukens, R Pintelon. Linear modeling in the presence of nonlinear distortings. IEEETransactions and measurement,2002,51(4):786-791.
    [115] J Schoukens, R Pintelon. Frequency response function measurements in the presence ofnonlinear distortions. Automatica,2001,37(3):939-946.
    [116] J Schoukens, R Pintelon. Esttimation of the risk for an unstable behaviour of feedback systemsin the presence of nonlinear distortions. Automatica,2004,40(4):1275-1279.
    [117] J Schoukens, R Pintelon. Fast approximate identification of nonlinear system. Automatica,2003,39(7):1267-1274.
    [118] J Schoukens, R Pintelon. Identification of linear systems with nonlinear distortions. Automatica,2005,41(3):491-504.
    [119] J Schoukens, R Pintelon. Analysis of windowing/leakage effects in frequency response functionmeasurements. Automatica,2006,42(1):27-38.
    [120] Laurent Vanbeylen, R Pintelon. Blind maximum likelihood identification of Wiener system.IEEE Transactions on Signal Processing,2009,57(8):3017-3029.
    [121] T Dobrowiecki, J Schoukens. Measuring a linear approximation to weakly nonlinear MIMOsystems. Automatica,2007,43(8):1737-1751.
    [122] Laurent Vanbeylen, R Pintelon. Blind maximum likelihood identification of Hammersteinsystem.. Automatica,2008,44(12):3139-3146.
    [123] Torsten Soderstrom. Error in variables methods in system identification. Automatica,2007,43(3):939-958.
    [124] A Chiuso. On the asymptotic properties of closed-loop CCA type subspace algorithms:equivalence results and role of the future horizon. IEEE Transaction on Automatic Control,2010,55(3):634-649.
    [125] A Chiuso. On the relation between CCA and predictor based subspace identification. IEEETransaction on Automatic Control,2007,52(10):1795-1812.
    [126] A Chiuso, G Picci. Consistency analysis of some closed loop subspace identification method.Automatica,2005,41(3):377-391.
    [127] A Chiuso. The role of vector augoressive modeling in predictor based subspace identification.Automatica,2007,43(6):1034-1048.
    [128] A Chiuso, G Picci. On the ill conditioning of subspace identification with inputs. Automatica,2004,40(4):575-589.
    [129] A Chiuso, G Picci. Numerical condictioning and asymptotic variance of subspace estimates.Automatica,2004,40(4):677-683.
    [130] A Chiuso. Asymptotic variance of closed loop subspace identification methods. IEEETransaction on Automatic Control,2006,51(8):1299-1314.
    [131] A Chiuso, G Picci. Asymptotic variance of subspace methods by data orthogonalization andmodel decoupling: a comparative analysis. Automatica,2004,40(10):1705-1717.
    [132] A Chiuso, G Picci. Subspace identification by data orthogonalization and model decoupling.Automatica,2004,40(10):1689-1703.
    [133] Dongliang Huang, Tohru Katayama. A closed loop subspace identification method forcontinuous time systems based on operator model. Asian Journal of Control,2004,6(3):341-352.
    [134] Hideyuki Tanaka, Tohru Katayama. A stochastic realization algorithm via block LQdecomposition in Hilbert space. Automatica,2006,42(5):741-746.
    [135] Hideyuki Tanaka, Tohru Katayama. Minimum phase properties of finie-interval stochasticrealization. Automatica,2007,43(9):1495-1507.
    [136] Tohru Katayama. Subspace identification of closed loop systems by the orthogonaldecomposition method. Automatica,2005,41(5):863-1872.
    [137] Tohru Katayama, Hideyuki Tanaka. An approach to closed loop subspace identification byorthogonal decomposition. Automatica,2007,43(9):1623-1630.
    [138] Hayato Nakada, Tohru Katayama. Identification of piecewise affine system based on statiscalclustering technique. Automatica,2005,41(5):905-913.
    [139] G Yin, Han Fu Chen. Blind channel identification via stochastic approximation: constant stepsize algorithms. System&Control Letter,2002,45(2):347-356.
    [140] JiFeng Zhang, Le Yi Wang. Perference lower bounds in stochastic robust and adaptive control.IEEE Transaction on Automatic Control,2001,46(7):1137-1141.
    [141] G Yin, Le Yi Wang. Tracking and identification of regime switching systems using binarysensors. Automatica,2009,45(4):944-955.
    [142] Shaobai Kan, G Yin, Le Yi Wang. System identification: regime switching unmodeled dynamicsand binary sensors. Nonlinear Analysis,2009,12(15):1328-1336.
    [143]Yanlong Zhao, Le Yi Wang. Identification of Wiener systems with binary valued outputobservations. Automatica,2007,43(6):1752-1765.
    [144] Le Yi Wang. Identification input design for consistent parameter estimation of linear systemswith binary valued output observations. IEEE Transaction on Automatic Control,2008,53(4):1867-1879.
    [145] G Yin, Le Yi Wang. Asymptotically efficient parameter estimation using quantized outputobservations. Automatica,2007,43(5):1178-1191.
    [146] Le Yi Wang, G Yin. Persistent identification of systems with unmodeled dynamics andexogenous disturbances. IEEE Transaction on Automatic Control,2000,45(7):1246-1256.
    [147] Le Yi Wang. Persistent identification of time varying systems. IEEE Transaction on AutomaticControl,1997,42(1):66-81.
    [148] Le Yi Wang, JiFeng Zhang. System identification using binary sensors. IEEE Transaction onAutomatic Control,2003,48(11):1892-1907.
    [149] Le Yi Wang, G Yin. Space and time complexity and sensor threshold selection in quantizedidentification. Automatica,2008,44(12):3014-3024.
    [150] Yucai Zhu. Optimal closed-loop identification test design for internal model control. Automatica,2000,36(5):1237-1241.
    [151] Roland Hildebrand. Identification for control: optimal input intended to identify a minimumvariance controller.2007,43(4):758-767.
    [152] Hakan Hjalmarsson, Brett Ninness. Least-squares estimation of a class of frequency functions:A finite sample variance expression. Automatica,2006,42(7):589-600.
    [153] Brett Ninness, Hakan Hjalmarsson. On the frequency domain accuracy of closed-loopestimation. Automatica,2005,41(2):1109-1122.
    [154] Brett Ninnes, Hakan Hjalmarsson. Analysis of the variablity of joint input-output estimationmethods. Automatica,2005,41(6):1123-1132.
    [155] Brett Ninness, Hakan Hjalmarsson. Variance error quantifications that are exact for finite-modelorder. IEEE Transaction on Automatic Control,2004,49(8):1275-1291.
    [156] Cristian R. Rojas. The cost of complexity in system identification: Frequency functionextimation of finite impulse response system. IEEE Transaction on Automatic Control,2010,55(10):2298-2309.
    [157] Hakan Hjalmarsson. From experiment design to closed-loop control. Automatica,2005,41(3):393-438.
    [158] Adrian G, Wills. Model Predictive Control Applied to Constraint handling in Active Noise andVibration Control. IEEE Transactions on control systems technology,2008,16(1):3-12.
    [159] Jonas Martensson, Hakan Hjalmarsson. Variance error quantification for identified poles andzeros. Automatica,2009,45(10):2512-2525.
    [160] M Gevers, L Miskovic. Identification of multi-input systems: variance analysis and input designissues. Automatica,2006,42(4):559-572.
    [161] L Miskovic, M Gevers. Correlation based tuning of decouping multivariable controllers.Automatica,2007,43(10):1481-1494.
    [162] L Miskovic, M Gevers. Closed loop identification of multivariable system: with or withoutexcitation of all references. Automatica,2008,44(12):2048-2056.
    [163] M Gevers, L Miskovic. Identification and the information matrix: how to get just sufficientlyrich?. IEEE Transactions on control systems technology,2009,54(12):2828-2840.
    [164] X Bombois, G Scorletti. Least costly identification experiment for control. Automatica,2006,42(10):1651-1662.
    [165] Henrik Jansson, Hakan Hjalmarsson. Input design via LMIs admitting frequency wise modelspecifications in confidence regions. IEEE Transactions on control systems technology,2005,50(10):1534-1549.
    [166] Henrik Jansson, Hakan Hjalmarsson. Closed loop experiment design for linear time invariantdynamical systems via LMIs. Automatica,2008,44(4):623-636.
    [167] Jonas Martensson, Hakan Hjalmarsson. How to make bias and variance errors insedsitive tosystem and model complexity in identification. IEEE Transactions on control systemstechnology,2011,51(1):100-112.
    [168] L Gerencser, Hakan Hjalmarsson. Identification of ARX systems with nonstationaryinput-asymptotic analysis with application to adaptive input design. Automatica,2009,45(4):623-633.
    [169] Brett Ninness, Hakan Hjalmarsson. The fundamental role of general orthonormal based insystem identification. IEEE Transactions on control systems technology,1999,44(7):1384-1406.
    [170] Liang Liang Xie, Lennart Ljung. Asymptotic variance expressions for estimated frequencyfunctions. IEEE Transactions on control systems technology,2001,46(12):1887-1899.
    [171] Brett Ninness, Stuart Gibson. Quantifying the accuracy of Hammerstein model estimation.Automatica,2002,38(10):2037-2051.
    [172] Brett Ninness, Hakan Hjalmarsson. The effect of regularization on variance error. IEEETransactions on control systems technology,2004,49(7):1142-1146.
    [173] Brett Ninness, Hakan Hjalmarsson. A unifying construction of orthonormal bases for systemidentification. IEEE Transactions on control systems technology,1997,42(4):515-521.
    [174] Brett Ninness. Frequency domain analysis of tracking and noise performance of anaptivealgorithms. IEEE Transactions on Signal Processing.1998,46(5):1313-1332.
    [175] Brett Ninness. On the CRLB for combined model and model order estimation of stationarystochantic processes. IEEE Signal Processing Letter.2004,11(2):293-296.
    [176] Brett Ninness. The asymptotic CRLB for the spectrum of ARMA processses. IEEE Transactionson Signal Processing.2003,51(6):1520-1531.
    [177] Marta Barenthin, Hakan Hjalmarsson. Identification and control: joint input design and H statefeedback with ellipsoidal parametric uncertainty via LMIs. Automatica,2008,44(3):543-551.
    [178]何丽君.采用先进控制策略的转台控制技术研究.南京航空航天大学硕士学位论文,2005.
    [179]王雪峰.飞行仿真转台品质整定与先进控制方法研究.南京航空航天大学硕士学位论文,2005.
    [180]解磊.基于变结构控制策略的转台控制计算研究.南京航空航天大学硕士学位论文,2007.
    [181]庞新良.机载光电稳定平台数字控制关键技术研究.国防科学技术大学博士学位论文,2007.
    [182]曾丽兰.基于H回路成形的无人直升机非脆弱鲁棒飞行控制研究研究.南京航空航天大学博士学位论文,2006.
    [183]张胜祥.基于滚动时域MILP的小型无人机航迹规划究.华南理工大学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700