磁性纳米催化剂的合成及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米催化剂作为一种集高催化活性、可磁性回收和重复使用于一身的新型纳米催化剂,在光催化、有机合成催化、生物催化等液相催化领域表现出传统催化剂无法比拟的优越性能。其中,以Fe3O4纳米颗粒为核,通过表面包覆不同的材料制备的磁性核/壳纳米复合材料因其优异的化学稳定性和表面性能、均匀的颗粒尺寸以及良好的液相分散性能成为一种优异的催化剂载体,被用来制备磁性纳米催化剂。
     本论文对以Fe3O4纳米颗粒为基础的磁性纳米催化剂进行了系统的研究。Fe3O4纳米微球的制备主要采用溶剂热法及其表面活性剂改性方法,然后,制备了介孔SiO2包覆和介孔铝氧化物包覆的磁性核/壳纳米微球,通过负载Pd纳米颗粒制备了Pd/γ-AlOOH@Fe3O4、Pb/γ-AlOOH@Fe3O4和Pd/γ-Al2O3@Fe3O4催化剂,通过包覆TiO2制备了TiO2/SiO2@Fe3O4光催化剂。采用X射线衍射仪(XRD)、N2吸脱附分析仪、透射电镜(TEM)、振动样品磁强计(VSM)和扫描电镜(SEM)等手段对磁性载体和催化剂的物化性能和结构进行了表征。分别考察了三种磁性Pd纳米催化剂对Heck反应的催化性能和重复使用性能,并考察了TiO2/SiO2@Fe3O4催化剂对有机染料废水的光催化性能和重复使用性能。主要研究工作如下:
     1、首次采用十六烷基三甲基溴化铵(CTAB)对溶剂热法合成Fe3O4进行改性。CTAB充分发挥了密封剂、定向团聚导向剂和分散剂的作用。当CTAB浓度为0.102mol/L,晶化时间为12h时,合成的Fe3O4微球具有优异的超顺磁性和单分散性,微球粒径分布约为230nm~250nm。同时,制备的Fe304微球不需要任何表面处理和预包覆,便可进行介孔Si02和γ-AlOOH的包覆。制备得到的SiO2@Fe3O4和γ-AlOOH@Fe3O4均具有清晰的核/壳结构和超顺磁性。其中,Si02壳层具有丰富的蠕虫状短程有序介孔,平均孔径约为2.1nm;γ-AlOOH壳层由片状γ-AlOOH构成,孔径分布约为2nm~5nm。在两种介孔材料的包覆过程中,CTAB分子为介孔壳层的沉积提供了异相成核中心,同时为介孔结构的形成提供了模板剂。
     2、通过超声波辅助法超快速(30min)制备了均匀单分散的meso-SiO2@Fe3O4微球,微球具有规整的核/壳结构和清晰的介孔SiO2壳层。制备过程中,CTAB浓度(CCTAB)、超声波强度(P)和超声时间(乃对微球的核/壳结构、分散性和介孔结构具有显著影响。在CCTAB=6.86mmol/L,P=150W和r=30min的最佳制备条件下,微球的BET比表面积和BJH孔体积分别高达468.6m2/g和0.35cm3/g。我们认为超声波的加速作用主要体现在三个方面:一方面加速了TEOS的水解-凝聚过程;另一方面加速了CTAB分子与水解前驱体之间的自组装过程;最后还可以加速介孔Si02在磁核表面的沉积。
     3、对于Pd/meso-SiO2@Fe3O4(E)催化剂,当Pd负载量为5.32wt%时,Pd纳米颗粒高分散地分布于载体的表面和壳层介孔孔道中,粒径分别为4nm~6nm和2nm~3nm。在溴苯与丙烯酸丁酯的Heck反应中,反应温度为120℃,Pdmol%为0.01mo1%时,反应12h溴苯转化率即可达到约100%,比文献报道的其他负载型Pd基Heck反应催化剂具有更高的催化活性。5.32%Pd/meso-SiO2@Fe3O4(E)催化剂具有优异的磁性回收和重复使用性能,重复使用8次后,溴苯的转化率依然高达92%以上,催化剂损失小于5%,催化剂中Pd含量达到5.15wt%。而且催化剂的核/壳结构保存完整,Pd纳米颗粒依然高分散地分布于载体上,粒径约为2nm~4nm。
     4、对于Pd/γ-AlOOH@Fe3O4和Pd/γ-Al2O3@Fe3O4两种催化剂。当Pd负载量为1.5wt%~6.0wt%时,前者中Pd纳米颗粒高分散地分布于片状γ-AlOOH上,平均粒径约为6nm~8nm,后者的Pd纳米颗粒存在明显的团聚。在溴苯与苯乙烯的Heck反应中,两种催化剂均表现出比其他负载型Pd基催化剂更高的催化活性。其中,4.5%Pd/γ-AlOOH@Fe3O4在120℃时完全催化转化溴苯仅为12h,同时,催化剂可重复使用8次,溴苯转化率保持在90%以上,催化剂回收率达到93%以上,并且催化剂结构和Pd负载量没有明显变化。
     5、对于核/壳结构TiO2/SiO2@Fe3O4磁性纳米光催化剂。当TiO2包覆量为50%,SiO2包覆量为6%时,TiO2层厚度约为8nm~10nm, BET比表面积和BJH孔体积分别达到495.3m2/g和0.54cm3/g。在光催化降解罗丹明B(RhB)时,50%TiO2/6%SiO2@Fe3O4催化剂在60min的光催化反应后,RhB的降解率可达到98.1%,重复使用8次后,光催化活性没有明显降低,而且催化剂的回收率可达90%以上。通过对原有催化剂的TiO2壳层进行优化,使其具有可见光响应。9%TiO2/6%SiO2@Fe3O4催化剂在60min的高压汞灯光照条件下,可完全降解亚甲基蓝和甲基橙,光催化活性远远高于P25,且重复使用8次后,催化剂的光催化活性无明显下降。
Magnetic nano-catalysts, a kind of new nano-catalyst with favorable magnetic recovery and high catalytic activity, have wide application prospects.in liquid phase catalysis, such as photocatalysis, organic synthesis catalysis, and biocatalysis. Particularly, the magnetic core/shell nano-composites composed by a Fe3O4core and a specific shell have been regarded as one kind of desirable catalysts carrier to prepare magnetic nano-catalysts because of their good chemical stability and surface properties, uniform particle size, and favorable liquid dispersion performance.
     In this dissertation, the magnetic nano-catalysts based on Fe3O4nanoparticles were systematically researched. Fe3O4nanoparticles were prepared by solvothermal method and surfactant modified solvothermal method. Then, Magnetic core/shell microspheres were prepared by coating mesoporous SiO2and mesoporous aluminum oxides on Fe3O4nanoparticles. Finally, Pd/mmso-SiO2@Fe3O4, Pd/y-AlOOH@Fe3O4and Pd/y-Al2O3@Fe3O4catalysts were synthesized by supporting Pd nanoparticles, and TiO2/SiO2@Fe3O4photocatalysts were prepared by coating TiO2. All magnetic supporters and catalysts were characterized by XRD, N2adsorption-desorption, TEM, VSM, and SEM. The Heck reaction catalytic acivity and reusability of Pd/meso-SiO2@Fe3O4, Pd/γ-AlOOH@Fe3O4and Pd/γ-Al2O3@Fe3O4magnetic core/shell nano-catalysts were studied. Meanwhile, the catalytic performances of TiO2/SiO2@Fe3O4catalysts for photocatalytic degradation dyestuffs (RhB, methyl orange, and methylene blue) were evaluated. The main work of the dissertation was as follows:
     1. Cetyltrimethyl ammonium bromide (CTAB) was used, for the first time, as modifier to improve the solvothermal synthesis of Fe3O4microspheres. CTAB molecules played the roles of capping agent, crystal growth oriented agent, and dispersant. When the CTAB concentration was0.102mol/L and the solvothermal time was12h, obtained Fe3O4microspheres exhibited favorable superparamagnetism and monodispersion, and the particle size distribution was about230nm-250nm. Meanwhile, the Fe3O4microspheres without any other treatment or pre-coated could be coated by mesoporous SiO2and y-AlOOH. The obtained SiO2@Fe3O4and y-AlOOH@Fe3O4microspheres presented obvious core/shell structure and superparamagnetism. Thereinto, the SiO2shell showed abundant of worlike pores with2.1nm of average pore size, and the y-AlOOH shell with2:0nm-5.0nm of mesopores was composed of many near nanosheets. The CTAB molecules could serve as nucleation seeds for precipitation of mesoporous shells and act templates for the formation of mesoporous structure during the coating process.
     2. Monodispersed meso-SiO2@Fe3O4microspheres were rapidly synthesized (30min) by ultrasonic-assisted method, and the microspheres exhibited uniform core/shell structure with obvious mesoporous shell. During the preparation process, the morphology and dispersion of microspheres and mesoporous structure of silica shell were significantly influenced by initial concentration of CTAB (CCTAB),ultrasonic irradiation power (P) and ultrasonic irradiation time (T). Under the best preparation condition (CCTAB=6.86mmol/L, P=150W and T=30min), the BET surface area and BJH pore volume of microspheres were468.6m/g and0.35cm/g, respectively. The acceleration effects of ultrasonic were mainly manifested in three aspects: accelerating the hydrolysis-condensation process of TEOS, accelerating the coassembly of hydrolyzed precursors and templates, and accelerating the deposition of silica oligomers on the magnetic particles.
     3. For the Pd/meso-SiO2@Fe3O4(E) catalysts, Pd nanoparticles were loaded on the surface of meso-SiO2@Fe3O4(E) supporters and into the mesopores of SiO2shell. The sizes of Pd nanoparticles were4nm-6nm and2nm~3nm, respectively. In the Heck reaction of bromobenzene and butyl acry late, the conversion of bromobenzene over5.32%Pd/meso-SiO2@Fe3O4(E) catalyst reached about100%under condition of120℃of reaction temperature,0.01mol%of Pd mole content, and12h of reaction time. Compared with the other supported Pd catalysts reported in literatures, Pd/meso-SiO2@Fe3O4(E) catalysts exhibited higher catalytic performance. Furthermore,5.32%Pd/meso-SiO2@Fe3O4(E) catalyst presented excellent magnetic recycling and reusability. After recycled for8times, the conversion of bromobenzene was above92%, the loss of catalyst was below5%, and the Pd loading was about5.15wt%. The catalyst kept uniform core/shell structure and the Pd nanoparticles with2nm~4nm of particle size kept highly dispersed state.
     4. For the Pd/γ-AlOOH@Fe3O4and Pd/γ-Al2O3@Fe3O4catalysts, the monodispersed Pd nanoparticles with6nm-8nm of particle size were loaded on the γ-AlOOH sheets of Pd/γ-AlOOH@Fe3O4, but the Pd nanoparticles on the latter exhibited obvious aggregation. In the Heck reaction of bromobenzene and styrene, both kinds of catalysts showed higher catalytic activity than the other supported Pd catalysts reported in literatures. Thereinto, the conversion of bromobenzene over4.5%Pd/γ-AlOOH@Fe3O4catalyst reached about100%under condition of120℃of reaction temperature and12h of reaction time. After recycled for8times, the conversion of bromobenzene was above90%, the recovery of catalyst was above93%, and morphology and Pd loading of catalyst were kept well.
     5. For the50%TiO2/6%SiO2@Fe3O4magnetic core/shell photocatalysts, the thickness of the homogeneous anatase TiO2layer was about8nm-10nm, and the BET surface area and the BJH pore volume were495.3m2/g and0.54cm3/g, respectively. The50%TiO2/6%SiO2@Fe3O4microspheres exhibited the best photocatalytic performance. The conversion of RhB achieved up to98.1%after60min UV irradiation. After recycled for8times, it also maintained high degradation rate and catalyst recovery. In addition, the photocatalysts received visible-light reponse after structure optimization. Two kinds of dyes (methyl orange and methylene blue) were completely degradated by9%TiO2/6%SiO2@Fe3O4catalyst after60min irradiation of high-pressure mercury lamp. Meanwhile, the catalyst exhibited favorable recovery and reusability.
引文
[1]Shylesh S, Schunemann V, Thiel W R. Magnetical separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis[J]. Angew. Chem. Int. Ed.,2010,49:3428-3459
    [2]Zhu Y H, Stubbs L P, Ho F, et al. Magnetic nanocomposites:a new perspective in catalysis[J]. ChemCatChem,2010,2:365-374
    [3]李瑞雪.新型磁性纳米功能材料的制备与性能研究[D].广州:华南理工大学,2010
    [4]漆婷.纳米Ni-Zn铁氧体材料的制备及其生物效应[D].成都:电子科技大学,2006
    [5]吴爱平.碳包覆磁性纳米颗粒的合成、结构及磁性能研究[D].长春:吉林大学,2011
    [6]付红平.磁性复合颗粒的合成及其特性研究[D].镇江:江苏大学,2008
    [7]Jeong U Y, Teng X W, Wang Y, et al. Superparamagnetic colloids:controlled synthesis and niche applications[J]. Adv. Mater.,2007,19:33-60
    [8]周小丽.磁性氧化铁纳米微粒的水热合成及其表面修饰[D].合肥:安徽大学,2008
    [9]Liu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application[J]. Angew. Chem. Int. Ed.,2007,46:1222-1244
    [10]季俊红,季生福,杨伟,等.磁性Fe304纳米晶制备及应用[J].化学进展,2010,22(8):1566-1574
    [11]Wu J H, Ko S P, Liu H L, et al. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method[J]. Colloid. Surface. A,2008,313-314:268-272
    [12]Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. Int. Ed.,2005,44:2782-2785
    [13]Yan H, Zhang J C, You C X, et al. Influences of different synthesis conditions on properties of Fe3O4nanoparticles[J]. Mater. Chem. Phys.,2009,113:46-52
    [14]季俊红.磁性核壳结构Cu/Fe3O4@SiO2催化剂的制备及其性能研究[D].北京:北京化工大学,2010
    [15]Ge J P, Hu Y X, Biasini M, et al. Superparamagnetic magnetite colloidal nanocrystal clusters[J]. Angew. Chem. Int. Ed.,2007,46:4342-4345
    [16]Zhu Y F, Zhao W R, Chen H R, et al. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property[J]. J. Phys. Chem. C,2007,111:5281-5285
    [17]Sun X H, Zheng C M, Zhang F X, et al.β-Cyclodextrin-assisted synthesis of superparamagnetic magnetite nanoparticles from a single Fe(Ⅲ) precursor[J]. J. Phys. Chem. C,2008,112:17148-17155
    [18]Lu J, Jiao X L, Chen D R, et al. Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates[J]. J. Phys. Chem. C,2009,113:4012-4017
    [19]Wei H, Yang W S, Xi Q, et al. Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption[J]. Mater. Lett.,2012,82:224-226
    [20]Shi R R, Liu X H, Gao G H, et al. Large-scale synthesis and characterization of monodisperse Fe3O4nanocrystals[J]. J. Alloys Compd.,2009,485:548-553
    [21]黄静.磁性纳米颗粒表面高分子修饰及其性能研究[D].武汉:武汉理工大学,2010
    [22]邹健莉.酞菁-二氧化硅纳米材料的制备与应用[D].厦门:厦门大学,2008
    [23]汪汉斌.超小型高分散纳米四氧化三铁粒子的制备及表征[D].武汉:华中科技大学,2004
    [24]陈伊泽.磁性纳米微球的制备及其在谷胱甘肽分离中的初步应用[D].兰州:兰州理工大学,2009
    [25]Zhou Z H, Wang J, Liu X,.et al. Synthesis of Fe3O4 nanoparticles from emulsions[J]. J. Mater. Chem.,2001,11:1704-1709
    [26]Zhang D E, Tong Z W, Li S Z, et al. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion[J]. Mater. Lett.,2008,62:4053-4055
    [27]Feltin N, Pileni M P. New technique for synthesizing iron ferrite magnetic nanosized particles[J]. Langmuir,1997,13:3927-3933
    [28]Xu J, Yang H B, Fu W Y, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method[J]. J. Magn. Magn. Mater.,2007,309:307-311
    [29]Ma M, Wu Y, Zhou J, et al. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field[J]. J. Magn. Magn. Mater.,2004,268:33-39
    [30]石变芳.新型多功能核壳结构复合材料的设计与制备[D].上海:华东理工大学,2010
    [31]王光辉.铁基核/壳结构磁性纳米球的合成及应用[D].大连:大连理工大学,2012
    [32]孙海平.磁性纳米粒子的表面修饰及功能化[D].扬州:扬州大学,2009
    [33]Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architectures templated by SiO2/Fe2O3nanocomposites[J]. Chem. Mater.,2006,18:614-619
    [34]Morel A L, Nikitenko S I, Glonnet K, et al. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties[J]. ACSnano,2008,2:847-856
    [35]Lu Y, Yin Y D, Mayers B, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano.Lett.,2002,2(3):183-186
    [36]Deng Y H, Wang C C, Hu J H, et al. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach[J]. Colloids Surf., A,2005,262:87-93
    [37]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc.,2008,130:28-29
    [38]Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J]. J. Am. Chem. Soc.,2006,128:688-689
    [39]Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. J. Am. Chem. Soc.,2005,127: 8916-8917
    [40]Tian H, Li J J, Shen Q, et al. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media[J]. J. Hazard. Mater.,2009,171:459-464
    [41]Deng Y H, Deng C H, Qi D W, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J]. Adv. Mater.,2009,21:1377-1382
    [42]Ratchahat S, Viriya-empikul N, Faungnawakij K, et al. Synthesis of carbon microspheres from starch by hydrothermal process[J]. Sci. J. UBU.,2010,1(2):40-45
    [43]He X D, Liu Y, Li H T, et al. Photoluminescent Fe3O4/carbon nanocomposite with magnetic property [J]. J. Colloid Interface Sci.,2011,356:107-110
    [44]Cohen H, Gedanken A, Zhong Z Y. One-step synthesis and characterization of ultrastable and amorphous Fe3O4 colloids capped with cysteine molecules[J]. J. Phys. Chem. C,2008,112: 15429-15438
    [45]Wang Y, Teng X W, Wang J S, et al. solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles[J]. Nano. Lett.,2003,3(6):789-793
    [46]Khan A, EI-Toni A M, Alsalhi M, et al. Preparation of magnetic polyacrylonitrile core-shell nanospheres by the miniemlsion polymerization method[J]. Mater. Lett.,2012,76:141-143
    [47]Rahman M M, Chehimi M M, Fessi H, et al. Highly temperature responsive core-shell magnetic particles:synthesis, characterization and colloidal properties[J]. J. Colloid Interface Sci.,2011,360:556-564
    [48]Kong L R, Lu X F, Bian X J, et al. Constructing carbon-coated Fe3O4 microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications[J]. ACS Appl. Mater. Inter.,2011,3(1):35-42
    [49]Zhu M Y, Diao G W. Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites:preparation, characterization, and their catalytic activity toward suzuki and heck coupling reactions[J]. J. Phys. Chem. C,2011,115(50):24743-24749
    [50]Chen Y J, Xiao G, Wang T S, et al. Porous Fe3O4/carbon core/shell nanorods:synthesis and electromagnetic properties[J]. J. Phys. Chem. C,2011,115:13603-13608
    [51]Peng H P, Liang R P, Zhang L, et al. Sonochemical synthesis of magnetic core-shell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myogolbin for direct electrochemistry [J]. Electrochim. Acta,2011,56:4231-4236
    [52]Peng H P, Liang R P, Qiu J D, et al. Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry[J]. Biosens. Bioelectron.,2011,26:3005-3011
    [53]Ye M M, Zhang Q, Hu Y X, et al. Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity[J]. Chem. Eur. J.,2010,16:6243-6250
    [54]Qi D W, Lu J, Deng C H, et al. Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres:synthesis, characterization and application in phosphoproteomics[J]. J. Phys. Chem. C,2009,113:15854-15861
    [55]Xuan S H, Wang F, Gong X L, et al. Hierarchical core/shell Fe3O4@SiO2@y-AIOOH@Au micro/nanoflowers for protein immobilization[J]. Chem. Commun.,2011,47:2514-2516
    [56]Pan D K, Zhang H, Fan T, et al. Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release[J]. Chem. Commun.,2011,47:908-910
    [57]Shao M F, Ning F Y, Zhao J W, et al. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins[J]. J. Am. Chem. Soc.,2012,134: 1071-1077
    [58]Jun Y W, Huh Y M, Choi J S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging[J]. J. Am. Chem. Soc.,2005, 127:5732-5733
    [59]Becker C, Hodenius M, Blendinger G, et al. Uptake of magnetic nanoparticles into cells for cell tracking[J]. J. Magn. Magn. Mater.,2007,311:234-237
    [60]Gai S L, Yang P P, Li C X, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers[J]. Adv. Funct. Mater.,2010, 20:1166-1172
    [61]Wang L, Sun J Q. Poly(allylamine hydrochloride)-dextran microgels functionalized with-magnetic and luminescent nanoparticles[J]. J. Mater. Chem.,2008,18:4042-4049
    [62]Li L L, Chen D, Zhang Y Q, et al. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system[J]. Nanotechnologh,2007,18:405102-405107
    [63]Teresa V S, Rebolledo A F, Sevilla M, et al. Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity[J]. Chem. Mater.,2009,21:1806-1814
    [64]Wang P, Shi Q H, Shi Y F, et al. Magnetic permanently confined micelle arrays for treating hydrophobicc organic compound contamination[J]. J. Am. Chem. Soc,2009,131:182-188
    [65]Tseng J Y, Chang C Y, Chen Y H, et al. Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(Ⅱ) ion[J]. Colloids Surf., A,2007,295:209-216
    [66]刘潘,刘红,张圆圆,等.TiO2/NiFe2O4磁性纳米光催化剂的制备及其光催化性能研究[J].环境污染与防治,2009,31(2):56-63
    [67]Tyrpekl V, Vejpravova J P, Roca A G. et al. Magnetically separable photocatalytic composite γ-Fe2O3@ TiO2 synthesized by heterogeneous precipitation[J]. Appl. Surf. Sci.,2011,257: 4844-4848
    [68]Xuan S H, Jiang W Q, Gong X L, et al. Magnetically separable Fe3O4@TiO2 hollow spheres: fabrication and photocatalytic activity[J]. J. Phys. Chem. C,2009,113:553-558
    [69]Beydoun D, Amal R. Novel photocatalysts:titania-coated magnetite, activity and photodissolution[J]. J. Phys. Chem. B,2000,104:4387-4396
    [70]杨伟,季生福,季俊红,等TiO2/SiO2@γ-Fe2O3光催化剂的制备及其光催化性能[J].化工环保,2010,30(5):450-453
    .[71] 杨伟.磁性纳米TiO2/SiO2@γ-Fe2O3光催化剂制备及对苯酚光催化降解性能研究[D].北京:北京化工大学,2010
    [72]Ji J H, Zeng P H, Ji S F, et al. Catalytic activity of core-shell structured Cu/Fe3O4@SiO2 microsphere catalysts[J]. Catal. Today,2010,158:305-309
    [73]Stevens P D, Fan J D, Gardimalla H M R, et al. Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions[J]. Org. Lett.,2005,7(11):2085-2088
    [74]Wang Z F, Xiao P F, Shen B, et al. Synthesis of palladium-coated magnetic nanoparticle and its application in heck reaction[J]. Colloids Surf., A,2006,276:116-121
    [75]Yuan D Z, Zhang Q Y, Dou J B. Supported nanosized palladium on superparamagnetic composite microspheres as an efficient catalyst for heck reaction[J]. Catal. Commun.,2010,11: 606-610
    [76]Yi D K, Lee S S, Ying J Y. Synthesis and applications of magnetic nanocomposite catalysts[J]. Chem. Mater.,2006,18(10):2459-2461
    [77]Rossi L M, Silva F P, Vono L L R, et al. Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions[J]. Green Chem.,2007,9:379-385
    [78]Panella B, Vargas A, Baiker A. Magnetically separable Pt catalyst for asymmetric hydrogenation[J]. J. Catal.,2009,261:88-93
    [79]Jacinto M J, Kiylhara P K, Masunaga S H, et al. Recoverable rhodium nanoparticles:synthesis, characterization and catalytic performance in hydrogenation reactions[J]. Appl. Catal., A,2008, 338:52-57
    [80]Jacinto M J, Santos O H C F, Jardim R F, et al. Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions[J]. Appl. Catal., A,2009,360:177-182
    [81]王君,范美青,杨飘萍,等.磁性固体超强酸SO42-/ZrO2-Al2O3-Fe3O4的制备与性能研究[J].无机化学学报(Chin. J. Inorg. Chem.),2007,23(7):1137-1142
    [82]Mojtahedi M M, Saeed Abaee M, Alishiri T. Superparamagnetic iron oxide as an efficient catalyst for the one-pot, solvent-free synthesis of a-aminonitriles[J]. Tetrahedron Lett.,2009, 50:2322-2325
    [83]Polshettiwar V, Baruwati B, Varma R S. Magnetic nanoparticle-supported glutathione:a conceptually sustainable organocatalyst[J]. Chem. Commun.,2009,14:1837-1839
    [84]Zhang D H, Li G D, Li J X, et al. One-pot synthesis of Ag-Fe3O4 nanocomposite:a magnetically recyclable and effcient catalyst for epoxidation of styrene[J]. Chem. Commun., 2008:3414-3416
    [85]He Q H, Zhang Z X, Xiong J W, et al. A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity[J]. Opt. Mater.,2008, 31:380-384
    [86]Yao G P, Qi D W, Deng C H, et al. Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis[J]. J. Chromatogr. A,2008,1215: 82-91
    [87]Wang J, Yao M, Xu G J, et al. Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process[J]. Mater. Chem. Phys.,2009,113:6-9
    [88]Peng H X, Liu G X, Dong X T, et al. Magnetic, luminescent and core-shell structured Fe3O4@YF3:Ce3+, Tb3+ bifunctional nanocomposites[J]. Powder Technol.,2012,215-216: 242-246
    [89]Jia B P, Gao L. Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field[J]. J. Phys. Chem. C,2008, 112:666-671
    [90]Berker R, Liedberg B, Kall P O, et al. CTAB promoted synthesis of Au nanorods-temperature effects and stability considerations[J]. J. Colloid Interface Sci.,2010,343:25-30
    [91]Cao M H, Hu C W, Peng G, et al. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods[J]. J. Am. Chem. Soc.,2003,125:4982-4983
    [92]Wang Y, Shi J C, Cao J L, et al. Synthesis of Co3O4 nanoparticles via the CTAB-assisted method[J]. Mater. Lett.,2011,65:222-224
    [93]郑园园.磁性核/壳结构铝氧化物催化剂的制备及其性能研究[D].北京:北京化工大学,2012
    [94]Xuan S H, Wang Y X J, Yu J C, et al. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles[J]. Chem. Mater.,2009,21:5079-5087
    [95]Yayapao O, Thongtem T, Phuuangrat A, et al. CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers[J]. J. Alloys Compd.,2011,509:2294-2299
    [96]Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH[J]. J. Colloid Interface Sci.,1996,177:490-494
    [97]Smith D K, Korgel B A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods[J]. Langmuir,2008,24:644-649
    [98]Xuan S H, Hao L Y, Jiang W Q, et al. Preparation of water-soluble magnetite nanocrystals through hydrothermal approach[J]. J. Magn. Magn. Mater.,2007,308:210-213
    [99]Penn R L, Oskam G, Strathmann T J, et al. Epitaxial assembly in aged colloids[J]. J. Phys. Chem. B,2001,105:2177-2182
    [100]Banfield J F, Welch S A, Zhang H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science,2000,289:751-754
    [101]Narayanaswamy A, Xu H F, Pradhan N, et al. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection[J]. Angew. Chem. Int. Ed.,2006,45:5361-5364
    [102]Tan Y W, Zhuang Z B, Peng Q, et al. Room-temperature soft magnetic iron oxide nanocrystals: synthesis, characterization, and size-dependent magnetic properties[J]. Chem. Mater.,2008,20: 5029-5034
    [103]Asuha S, Suyala B, Siqintana X, et al. Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe-urea complex and its properties[J]. J. Alloys Compd.,2011,509: 2870-2873
    [104]Deng Y H, Cai Y, Sun Z K, et al. Magnetically responsive ordered mesoporous materials:a burgeoning family of functional composite nanomaterials[J]. Mater. Chem. Phys.,2011,510: 1-13
    [105]Liu J,. Qial S Z, Hu Q H, et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications[J]. Small,2011,7:425-443
    [106]Yang P P, Quan Z W, Hou Z Y, et al. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier[J]. Biomaterials,2009,30:4786-4795
    [107]Deng Y H, Cai Y, Sun Z K, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure:a highly integrated catalyst system[J]. J. Am. Chem. Soc.,2010, 132:8466-8473
    [108]Dang F, Kato K, Imai H, et al. Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis[J]. CrystEngComm,2010,12:3441-3444
    [109]Skrabalak S E, Suslick K S. Porous MoS2 synthesized by ultrasonic spray pyrolysis[J]. J. Am. Chem. Soc.,2005,127:9990-9991
    [110]Jiang J P, Xu S, Zhu J M, et al. Ultrasonic-assisted synthesis of monodisperse single crystalline silver nanoplates and gold nanorings[J]. Inorg. Chem.,2004,43:5877-5883
    [111]Ruan Q C, Zhu Y C, Zeng Y, et al. Ultrasonic-irradiation-assisted oriented assembly of ordered monetite nanosheets stacking[J]. J. Phys. Chem. B,2009,113:1100-1106
    [112]Wang B Y, Wu J M, Yuan Z Y, et al. Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure[J]. Ultrasonic Sonochemistry,2008,15:334-338
    [113]Chareonpanich M, Nanta-ngern A, Limtrakul J. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique[J]. Mater. Lett.,2007,61:5153-5156
    [114]Run M T, Wu X Z, Wu G. Ultrasonic synthesis of mesoporous molecular sieve[J]. Micropor. Mesopor. Mater.,2004,74:37-47
    [115]Wang C L, Zhang H, Zhang J H, et al. Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals[J]. J. Phys. Chem. C,2007, 111:2465-2469
    [116]Ghows N, Entezari M H. Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant[J]. Ultrasonics Sonochemistry,2012,19:1070-1078
    [117]Tang S C, Tang Y F, Zhu S P, et al. Synthesis and Characterization of silica-silver core-shell composite particles with uniform thin silver layers[J]. J. Solid State Chem.,2007,180: 2871-2876
    [118]Huang Z B, Tang F Q. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres[J]. J. Colloid Interface Sci.,2005,281:432-436
    [119]Rao K S, Hami K E, Kodaki T, et al. A novel method for synthesis of silica nanoparticles[J]. J. Colloid Interface Sci.,2005,289:125-131
    [120]Mizukoshi Y, Fujimoto T, Nagata Y, et al. Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method[J]. J. Phys. Chem. B,2000,104:6028-6032
    [121]Heck R F, Nolley J P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides[J]. J. Org. Chem.,1972,37(14):2320-2322
    [122]Mizoroki T, Mori K, Ozaki A. Arylation of olefin with aryl iodide catalyzed by palladium[J]. Bull. Chem. Soc. Jap.,1971,44:581
    [123]Bras J L, Muzart J. Intermolecular dehydrogenative heck reaction[J]. Chem. Rev.,2011,111: 1170-1214
    [124]Dounay A B, Overman L E. The asymmetric intramolecular heck reaction in natural product total synthesis[J]. Chem. Rev.,2003,103:2945-2963
    [125]Farina V. High-turnover palladium catalysts in cross-coupling and heck chemistry:a critical overview[J]. Adv. Synth. Catal.,2004,346:1553-1582
    [126]Veerakumar P, Velayudham M, Lu K L, et al. Silica-supported PEI capped nanopalladium as potential catalyst in suzuki, heck and sonogashira coupling reactions[J]. Appl. Catal. A:Gen., 2013,455:247-260
    [127]刘鸿飞,贾志刚,季生福.负载型Heck反应催化剂的研究进展[J].催化学报,2012,33(5):757-767
    [128]Zhao F Y, Murakami K, Shirai M, et al. Recyclable homogeneous/heterogeneous catalytic systems for heck reaction through reversible transfer of palladium species between solvent and support[J]. J. Catal.,2000,194:479-483
    [129]Hu H, Shao M W, Zhang W, et al. Synthesis of Layer-deposited silicon nanowires, modification with Pd nanoparticles, and their excellent catalytic activity and stability in the reduction of methylene blue[J]. J. Phys. Chem. C,2007,111:3467-3470
    [130]Demel J, Sujandi, Park S E, et al. Preparation of heterogeneous catalysts supported on mesoporous molecular sieves modified with various N-groups and their use in the heck reaction[J]. J. Mol. Catal. A:Chem.,2009,302:28-35
    [131]Demel J, Cejka J, Stepnicka P. Palladium catalysts deposited on silica materials:comparison of catalysts based on mesoporous and amorphous supports in heck reaction[J]. J. Mol. Catal. A: Chem.,2010,329:13-20
    [132]Zhu Y H, Ship C P, Emi A, et al. Supported ultra small palladium on magnetic nanoparticles used as catalysts for suzuki cross-coupling and heck reactions[J]. Adv. Synth. Catal.,2007, 349:1917-1922
    [133]Li Z H, Chen J, Su W P, et al. A titania-supported highly dispersed palladium nano-catalyst generated via in situ reduction for efficient heck coupling reaction[J]. J. Mol. Catal. A:Chem., 2010,328:93-98
    [134]Ma M T, Lu J M. Pd(Ⅱ)-catalyzed oxidative heck-type reaction of triarylphosphines with alkenes via carbon-phosphorus bond cleavage[J]. Tetrahedron,2013,69(9):2102-2106
    [135]Zhao F Y, Bhanage B M, Shirai M, et al. Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/or inorganic bases without ligands[J]. Chem. Eur. J.,2000,6(5):843-848
    [136]Mehnert C P, Weaver D W, Yin J Y. Heterogeneous heck catalysis with palladium-grafted molecular sieves[J]. J. Am. Chem. Soc.,1998,120:12289-12296
    [137]Zhang F W, Jin J, Zhong X, et al. Pd immobilized on amine-functionalized magnetite nanoparticles:a novel.and highly active catalyst for hydrogenation and heck reactions[J]. Green Chem.,2011,13:1238-1243
    [138]Shi T, Guo X Z, Yang H. Preparation and characterization of transparent boehmite (γ-AlOOH) sol[J]. Rare Metal Mat. Eng.,2008,37(2):73-75
    [139]吕建刚,张娟,丁维平,等.勃姆石AlOOH纳米管的合成及表征[J].无机化学学报,2007,23(5):897-900
    [140]Liu H P, Lu G Z. Mesoporous Al2O3 assembled by nano-films:synthesis and Pt/Al2O3 performance for catalytic hydrogenation of nitrobenzene[J]. Chinese J. Org. Chem.,2011, 27(10):2045-2052
    [141]Zhang L M, Lu W C, Yan L M, et al. Hydrothermal synthesis and characterization of core/shell AlOOH microspheres[J]. Micropor. Mesopor. Mater.,2009,119:208-216
    [142]Cai W Q, Yu J G, Mann S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres[J]. Micropor. Mesopor. Mater.,2009,122:42-47
    [143]Huang J, Wang Y, Zheng J M, et al. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation of α, ω-diols to lactones[J]. Appl. Catal. B:Environ.,2011,103:343-350
    [144]Zhou Y F, Fu H Y, Zheng X J, et al. Hydrogenation of methyl propionate over Ru-Pt/AIOOH catalyst:effect of surface hydroxyl groups on support and solvent[J]. Catal. Commun.,2009, 11:137-141
    [145]Doskocil E J, Mueller G M. Role of Cs promotion of Ag/AIOOH catalysts for the epoxidation of 1,3-butadiene:effects on surface acidity and basicity[J]. J. Catal.,2005,234:143-150
    [146]Davies I W, Matty L, Hughes D L, et al. Are heterogeneous catalysts precursors to homogeneous catalysts[J]. J. Am. Chem. Soc.,2001,123:10139-10140
    [147]Zheng Y Y, Ji S F, Liu H F, et al. Synthesis of mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres[J]. Particuology,2012,10:751-758
    [148]Zhu J, Zhou J H, Zhao T J, et al. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the heck reaction[J]. Appl. Catal. A:Gen.,2009,353:243-250
    [149]Balanta A, Godard C, Claver C. Pd nanoparticles for C-C coupling reactions[J]. Chem. Soc. Rev.,2011,40:4973-4985
    [150]Malato S, Fernandez-Ibanez P, Maldonado M I, et al. Decontamination and disinfection of water solar photocatalysis:recent overview and trends[J]. Catal. Today,2009,147:1-59
    [151]Wang J, Li R H, Zhang Z H, et al. Solar photocatalytic degradation of dye wastewater in the presence of heat-treated anatase TiO2 Powder[J]. Environ. Prog.,2008,27:242-249
    [152]Zhang Z Z, Wang X X, Long J L, et al. H2-O2 promoting effect on photocatalytic degradation of organic pollutants in an aqueous solution without an external H2 supply[J]. Appl. Catal. A: Gen.,2010,380:178-184
    [153]He Z L, Que W X, Chen J, et al. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment:XPS and FTIR characterization[J]. J. Phys. Chem. Solids,2013,74(7):924-928
    [154]Li H, Zhang J, Chen X F, et al. Ionic-liquid-assisted growth of flower-like TiO2 film on Ti substrate with high photocatalytic activity[J]. J. Mol. Catal. A:Chem.,2013,373:12-17
    [155]Chen X, Li C W, Wang J, et al. Investigation on solar photocatalytic activity of TiO2 loaded composite:TiO2/eggshell, TiO2/clamshell and TiO2/CaCO3[J]. Mater. Lett.,2010,64: 1437-1440
    [156]Tank C M, Sakhare Y S, Kanhe N S, et al. Electric field enhanced photocatalytic properties of TiO2 nanoparticles immobilized in porous silicon template[J]. Solid State Sci.,2011,13: 1500-1504
    [157]Khalid N R, Ahmed E, Hong Z L, et al. Enhanced photocatalytic activity of grapheme-TiO2 composite under visible light irradiation[J]. Curr. Appl. Phys.,2013,13(4):659-663
    [158]Gad-Allah T K, Fujimura K, Kato S, et al. Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4):effect of carbon coating and calcination temperature[J]. J. Hazard. Mater.,2008,154:572-577
    [159]Liu H, Shou H K, Sun X, et al. Preparation and characterization of visible light responsive Fe3O4-TiO2 composites[J]. Appl. Surf. Sci.,2011,257:5813-5819
    [160]Gao Y, Chen B H, Li H L, et al. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater. Chem. Phys.,2003,80:348-355
    [161]Belessi V, Lambropoulou D, Konstantinou I, et al. Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor[J]. Appl. Catal. B:Environ.,2009,87:181-189
    [162]Beydoun D, Amal B, Low G, et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. J. Mol. Catal. A:Chem.,2002,180:193-200
    [163]Liu H F, Jia Z G, Ji S F, et al. Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff[J]. Catal. Today,2011,175:293-298
    [164]Yu J C, Yu J G, Zhao J C. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment[J]. Appl. Catal. B:Environ.,2002,36:31-43
    [165]Fu X Z, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2[J]. Environ. Sci. Technol.,1996,30:647-653
    [166]Dong W Y, Lee C W, Lu X C, et al. Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye[J]. Appl. Catal. B:Environ.,2010,95:197-207
    [167]Arai Y, Tanaka K, Khlaifat A L. Photocatalysis of SiO2-loaded TiO2[J]. J. Mol. Catal. A: Chem.,2006,243:85-88
    [168]Qi K H, Chen X Q, Liu Y Y, et al. Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles[J]. J. Mater. Chem.,2007,17:3504-3508
    [169]Iwamoto S, Saito K, Inoue M, et al. Preparation of the xerogels of nanocrystalline titanias by the removal of the glycol at the reaction temperature after the glycothermal method and their enhanced photocatalytic activities[J]. Nano. Lett.,2001,1:417-421
    [170]Ozaki H, Iwamoto S, Inoue M. Enhanced visible light sensitivity of nitrogen-doped nanocrystalline Si-modified titania prepared by the glycothermal method[J]. Chem. Lett.,2005, 34:1082-1083
    [171]Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems[J]. Desalination,2007,202: 199-206
    [172]Bayati M R, Fard F G, Moshfegh A Z, et al. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductor under pulse current[J]. Mater. Chem. Phys.,2011,128: 427-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700