水润滑橡胶合金轴承接触及润滑特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于水润滑橡胶合金轴承,低粘度的润滑介质和橡胶衬层特殊的材料性质,使得其润滑机理较一般油润滑金属滑动轴承产生了很大的差异。多沟槽的几何结构,加上水的粘性小,水润滑橡胶合金轴承中水膜的压力普遍较低。但由于橡胶材料的弹性模量较小,在较低的水膜压力下会产生明显的变形,从而对润滑水膜的厚度和形状将产生显著的影响,并进一步影响水膜中的压力分布。因此,对水润滑橡胶合金轴承润滑机理的研究上,既要考虑多曲面、多沟槽的几何结构,也要充分考虑衬层材料性能对润滑性能的影响。
     为了了解水润滑橡胶合金轴承在重载、干摩擦状态下的润滑特性,论文利用有限元方法对不同载荷、不同摩擦系数条件下的水润滑橡胶合金轴承进行了动态接触分析。计算的结果表明,由于摩擦力的存在,最大接触应力、最大接触位移和最大接触应变一般出现在轴承两端或底部板块沿旋转方向下游的区域。
     之后,采用直接流固耦合求解方法从全周向尺度对水润滑橡胶合金轴承进行了润滑性能分析。首先从水润滑橡胶合金轴承的特殊性出发,结合Navier-Stokes方程和弹性变形等理论,建立了水润滑橡胶合金轴承的润滑求解模型,对不同偏心率、不同转速下的水润滑橡胶合金轴承进行了数值仿真,得到了不同状态下的水膜压力分布、橡胶变形分布规律,并在此基础上计算了相应的水膜厚度分布、承载能力和摩擦系数。接着,从过渡圆弧尺寸、橡胶衬层厚度和衬层材料性能几个方面出发,研究了不同因素对水润滑橡胶合金轴承润滑性能的影响。
     流固耦合的求解结果表明,在偏心率小于等于1的情况下,水润滑橡胶合金轴承的承载能力普遍较低(计算范围内的最大比压约为0.08MPa);采用较小的过渡圆弧尺寸会增加收敛楔形的长度,从而有利于承载能力的提高;在偏心率较大的情况下,较小的衬层厚度有助于水膜压力的提高,其承载能力也相应增大;在轴承刚性间隙相同的条件下,衬层材料弹性模量越低,对应的水膜厚度越厚,但承载能力也会相应降低。
     本文内容是国家自然科学基金面上项目“大尺寸高比压水润滑轴承的创新设计理论与方法”(项目编号:50775230)的一部分,拟通过上述研究对水润滑轴承的润滑机理及相关研究方法提供新的借鉴。
Owing to the low viscosity of water and special material properties of rubber bushing, the water lubricated rubber alloy bearings have performances different from those of traditional oil lubricated metal bearings in the lubrication mechanism. For the water lubricated rubber alloy bearings with multi-groove structure, the lower film pressure can occur. Meanwhile, owing to the low elasticity of rubber materials, serious deformation can appear on the bushing of the bearings, even on the relatively lower film pressure, thus changing the water film thickness and its shape, and further affecting the film pressure distribution. Therefore, in the case of the lubrication mechanism of water lubricated rubber alloy bearings, what should be considered not only including their structure like multi-surface and multi-groove ones, but also including their material properties of rubber bushing.
     A finite element method (FEM) was employed in order to gain an insight into the lubrication characteristics of a water lubricated rubber alloy bearing under the conditions of heavy load and dry friction, where dynamic contact analysis of the bearing was carried out with different loads and different friction coefficients. The study shows that the maximum contact stress, maximum contact displacement and the maximum strain usually exist at both ends in bearing length direction or the downstream along the rotation direction of the bearing.
     The lubrication performance of the water lubricated rubber alloy bearings were analyzed at a full circumferential scale using fluid-structure interaction technique. A governing equation suitable for this kind of bearings is first established based on Navier-Stokes equation and associated elastic theories, combining the particularity of the water lubricated rubber alloy bearings with a fluid-structure interaction technique. The film pressure and the deformation distributions of the rubber bushing are separately investigated on the condition of different eccentricities and different speeds using numerical simulation method, further the corresponding water film thickness distribution, load-carrying capacity and friction coefficient achieved. Afterward, influences of some factors, including the radius of corner, the thickness of rubber and material properties of bushing, on lubrication performances of the bearings are studied.
     The numerical results reveal that the load-carrying capacity of a water lubricated rubber alloy bearing is lower in the case of eccentricity ratio less than and equal to unit (the maximum pressure of 0.08Mpa can be found in the present study). It is also found that a decreasing radius of corner for the bearing increases the convergent wedge length, which is helpful to the improvement of load-carrying capacity, while in the case of large eccentricity ratio, the film pressure for the bearing will decrease with increasing rubber bushing thickness. In the same rigid clearance, the lower elasticity modulus of bushing material, the thicker water film, but the smaller load-carrying capacity.
     This research is funded by the State Natural Sciences Foundation General Projects:“Innovative design theory and method of water lubricated bearing system with large size and high specific pressure”(Number:50775230). The paper will provide a reference for the study of lubrication mechanism and research methods.
引文
[1]王优强,宋玲,李鸿琦等.水润滑橡胶轴承设计研究[J].润滑与密封,2003,(2):21-22.
    [2]王家序,李太福.用水为润滑介质的摩擦副研究现状与发展趋势[C].《99全国流体动力与机电一体化技术学术年会》论文专辑.1999,(3-4):9-10.
    [3]陈战,王家序,秦大同.以水作润滑介质的摩擦副的研究[J].农业机械学报,2001,(3):124-125.
    [4]郭力.水润滑轴承研究的进展[J].精密制造与自动化,2007,(1):6-9.
    [5]王优强,杨成仁.水润滑橡胶轴承研究进展[J].润滑与密封,001,(2):65-67.
    [6]王家序,王帮长.圆弧槽水润滑橡胶合金轴承[P].中国,ZL200510057180.8,2005.
    [7]王家序,田凡等.高性能水润滑机械传动系统[P].中国,ZL200610054131.3,2006.
    [8]池长青,流体力学润滑[M].北京:国防工业出版社,1998.
    [9]邱宣怀,郭可谦,吴宗泽等.机械设计[M].北京:高等教育出版社,2002.
    [10]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [11]周桂如,马骥,全永昕.流体润滑理论[M].浙江:浙江大学出版社,1990.
    [12]彭晋民.水润滑轴承的润滑机理及设计研究[D].重庆大学博士学位论文,2003.
    [13]王贤锋,林青,胡茂横.水润滑橡胶尾管轴承的性能研究[J].船舶工程,1993,(4):45-49,55.
    [14]杨和庭,唐育民.船舶水润滑尾管橡胶轴承的设计[J].武汉造船,2000,(2):19-22.
    [15]林秀娟.水润滑橡胶轴承摩擦实验研究与润滑机理分析[D].青岛建筑工程学院硕士学位论文,2004.
    [16]段芳莉,韦云隆,海鹏洲.水润滑橡胶轴承的弹流润滑分析[J].润滑与密封,2001,(3):5-7.
    [17] Wu Xiaojin , Wang Jiaxu , Xiaoke , Zhu Juanjuan . Numerical simulation study on water-lubricated rubber bearing[C].Journal of Advanced Manufacturing Systems,v7,n1,June,2008.
    [18] Bhushan B.Stick-Slip Induced Noise Generation in Water-Lubricated Compliant Rubber Bearings[J].ASME Journal of Lubrication Technology,1980,(102):201-212.
    [19]王国钦.水润滑艉轴承浅析[J].船舶科学技术,2002,24(6):70-72.
    [20]江邦治.关于核泵水润滑轴承的设计[J].水泵技术,1997,(5):16-19.
    [21]吴仁荣.水润滑轴承在船用泵中的应用[J].流体工程,1989,(5):12-15.
    [22]杨成仁,苏逢荃,王优强.八纵向沟槽水润滑橡胶轴承润滑机理的实验研究[J].青岛建筑工程学院学报,1995,(4):51-58.
    [23] Roy L.Orndorff Jr.Water-Lubricated Rubber Bearings,History and New Developments [J].Naval Engineers Journal,1985,(10):39-52.
    [24] Roy L.Orndorff Jr,John C.Holzheimer.Thin Film Tribology and Rubber Bearings [J].Tribology,1993,(25):611-620.
    [25] D L Cabrera,N H Woolley,D R Allanson.Film Pressure Distribution in Water-lubricated Rubber Journal Bearings[J].IMechE,2005,(219):125-132.
    [26] B C Majumdar,R.Pai,D J Hargreaves.Analysis of Water-lubricated Journal Bearings with Multiple Axial Grooves[J].Journal of Engineering Tribology,2004,(218):135-146.
    [27] Alex de Kraker,Ron A J van Ostayen,Daniel J Rixen.Calculation of Stribeck Curves for (water) Lubricated Journal Bearings [J].Tribology International,2007,(40):459-469.
    [28]王优强.水润滑橡胶轴承润滑机理的研究[D].东北大学硕士学位论文,1995.
    [29]段芳莉.橡胶轴承水润滑机理的研究[D].重庆大学博士学位论文,2002.
    [30]余江波.基于资源节约与环境友好的高性能水润滑轴承润滑关键技术研究[D].重庆大学,2006.
    [31]郭宏升.水润滑高速动静压滑动轴承的理论与实验研究[D].北京科技大学博士学位论文,2007.
    [32] Tan Kong Hong Ryan Tanamal.Modeling of Fluid Flow in Multiple Axial Groove Water Lubricated Bearings Using Computational Fluid Dynamics[D].Queensland University of Technology,Australia,2007.
    [33] Zenglin Guo,Toshio Hirano,R.Gordon Kirk.Application of CFD Analysis For Rotating Machinery—Part I: Hydrodynamic , Hydrostatic Bearings and Squeeze Film Damper [J].Journal of Engineering for Gas Turbines and Power,2005,(127):445-451.
    [34]孟凡明,刘永军,张优云.基于MATLAB的流体润滑求解和可视化研究[J].润滑与密封,2004,163(3):50-51.
    [35] K.P.Gertzos,P.G.Nikolakopoulos,C.A.Papadopoulos.CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J].Tribology International,2008,(41):1190-1204[J].
    [36] Markus Hartinger , Marie-Laure Dumont et al . CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact[J].Journal of Tribology,2008,(130):041503-1-041503-15.
    [37]郑明军.橡胶件的静、动态特性及有限元分析[D].北方交通大学硕士学位论文,2002.
    [38] ASTM D412-06a . Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension.2006.
    [39]中华人民共和国国家标准.GB/T528-2009.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定.北京:国家技术监督局,2009.
    [40]王伟,邓涛,赵树高.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品,2004,(4):8-10.
    [41]刘琴华.船舶尾轴承水润滑特性数值计算与试验研究[D].武汉理工大学硕士学位论文,2008.
    [42]朱艳峰,刘锋等.橡胶材料的本构模型[J].橡胶工业,2006,(2):119-125.
    [43] Lee B S,Rivin E I.Finite Element Analysis of Load-Deflection and Characteristics of Compressed Rubber Components for Vibration Control Devices[J].Journal of Mechanical Design,1996,(118):328-335.
    [44]穆志韬,邢耀国.密封结构中超弹性接触问题的有限元分析方法[J].航空计算技术,2003,33(4),44-47.
    [45]周正贵.计算流体力学基础理论与实际应用[M].南京:东南大学出版社,2008.
    [46]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [47]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [48]岳戈.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010.
    [49] Pai R.,Hargreaves D J,Brown R.Modelling of fluid flow in 3-axial groove water bearing using computational fluid dynamics[C].In the 14th Australian Fluid Mechanics Conference,Adelaide,Australia,2001.
    [50]张直明.滑动轴承的流体动力润滑理论[M].2版.北京:高等教育出版社,1987.
    [51]岳戈.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008.
    [52]余江波,王家序等.弹性模量对水润滑轴承的性能影响[J].润滑与密封,2006,(11):69-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700