自体外周血EPCs与BMSCs联合PDPBB构建微血管化生物骨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景及目的]在整形外科临床工作中,骨缺损严重导致患者外观畸形、功能毁损。中国是拥有世界上最多人口的国家,每年因先天畸形、各类创伤、疾病、交通意外、肿瘤手术等造成的各类骨组织缺损的患者大概在300万例以上。随着人口老龄化范围的扩大,骨缺损患者的数量正在以每年10%的数率增长。随着组织工程的蓬勃发展和研究的不断深入,各种类型的组织工程骨开始逐渐应用于骨缺损修复,但因种子细胞功能单一、多采用异体种子细胞等,导致组织工程骨因血管化不良、排异反应等引发坏死、吸收,不仅使骨缺损修复失败,坏死物更可对机体产生不良损伤,严重阻碍了组织工程骨进入临床研究及运用。因此,构建组织相容性好,无排异反应,血管化良好的组织工程骨,是组织工程骨进行临床修复应用的关键。本课题组拟采用来源于自体的具有优异新生血管及管腔形成能力的自体外周血内皮祖细胞(EPCs)与自体骨髓间充质干细胞(BMSCs)构建联合培养种子细胞,并将该种子细胞复合于课题组制备的脱蛋白生物骨构建自体组织工程生物骨,对BMSCs对EPCs的血管化促进作用、组织工程骨的成骨作用提供体外、体内连续性动态监控。为构建可血管化、无排异组织工程骨的临床应用提供系统化技术支持。
     [方法]
     (1)抽取新西兰大耳白兔外周血密度梯度离心法加贴壁法提取纯化自体外周血内皮祖细胞,取第三代细胞进行免疫荧光染色检测贴壁细胞CD34、CD133vWF表面标志;
     (2)麻醉状态下抽取新西兰大耳白兔骨髓液,密度梯度离心法加贴壁法提取纯化自体骨髓间充质干细胞,取第三代细胞进行免疫荧光染色检测贴壁细胞CD29、CD34、CD90表面标志;
     (3)取骨髓间充质干细胞与外周血内皮祖细胞按照:外周血内皮祖细胞、2:1、1:2、1:1、骨髓间充质干细胞的浓度共同培养;使用倒置显微镜对各组细胞的形态变化进行观察;各组细胞的生长增殖由Wst-1法检测并描绘出曲线,比较各组细胞增殖率;
     (4)细胞联合培养体系构建后第3天、7天、14天时将最佳比例自体联合培养细胞(外周血EPCs及BMSCs均来源与同一实验动物)、单纯骨髓间充质干细胞、单纯内皮祖细胞进行碱性磷酸酶染色及和茜素红钙染色;倒置显微镜下观察碱性磷酸酶和骨钙素分泌情况;并采用ALP试剂盒及OC试剂盒定量测定各组细胞碱性磷酸酶和骨钙素含量:
     (5)于联合培养3、7、14天分别提取最佳比例自体联合培养细胞、单纯骨髓间充质干细胞、单纯内皮祖细胞组总RNA,采用实时荧光定量PCR技术检测成骨和血管化基因的表达,包括VEGF.Osteonectin.Osteopotin和Collagen Type I:
     (6)采用新鲜猪椎骨脱钙、脱细胞处理后制备成部分脱蛋白骨,纤维粘连蛋白包被制成脱蛋白生物骨,运用扫描电镜、液体置换法检测该生物骨的孔隙率及孔径;骨髓间充质干细胞和外周血内皮祖细胞接种部分脱蛋白生物骨片,Wst-1法检测吸光度,检测最佳比例自体联合培养细胞、单纯骨髓间充质干细胞、单纯内皮祖细胞组细胞在脱蛋白生物骨上的生长情况,确定最佳移植时间,运用扫描电镜对各个细胞组在PDPBB粘附、增殖情况进行观测;
     (7)抽取外周血及骨髓的健康新西兰大耳白兔12只,于其右上肢、双下肢分别进行自体工程骨回植(PDPBB+外周血内皮祖细胞组;PDPBB+骨髓间充质干细胞;PDPBB+最佳比例自体联合培养细胞组:),分别将组织工程骨植于新西兰大耳白兔股肌袋内(自体联合培养细胞组植回原取材动物体内);硬组织切片免疫组化染色检测CD34、CD105、ZO-1分析新骨微血管化情况。
     [结果]
     (1)抽取的外周血用密度梯度离心法、贴壁培养法提取纯化并进行扩增,可获得高纯度的EPCs,第三代外周血EPCs抗原CD34、CD133、vWF免疫荧光鉴定均为阳性;
     (2)骨髓液用密度梯度离心法、贴壁培养法提取纯化并进行细胞扩增,可获得大量高纯度的BMSCs,第三代BMSCs抗原CD29、CD90免疫荧光染色鉴定均为阳性,CD34为阴性;
     (3)体外联合培养细胞1:2组3天许多细胞间出现突触相互连接,自体联合培养细胞各比例组部分细胞融合成团块状,各组混合细胞Wst-1检测吸光度逐渐升高,骨髓间充质干细胞、2:1、1:2、1:1联合培养细胞体系、外周血内皮祖细胞组均在13天时达到高峰,联合培养细胞组1:2浓度吸光度最高;随后各浓度组细胞吸光度持续平台期,差异有统计学意义;
     (4)体外培养第3天时ALP染色:外周血内皮祖细胞组及单纯骨髓间充质干细胞组呈阴性反应,自体联合培养细胞组部分细胞阳性:7天时外周血内皮祖细胞组ALP染色仍未见阳性细胞,自体联合培养细胞组可见阳性细胞增多,有小片状细胞阳性,单纯骨髓间充质干细胞组可见散在颜色较淡的阳性细胞;14天时外周血内皮祖细胞组ALP染色仍未见阳性细胞,联合培养细胞组可见阳性细胞增多成大片状,颜色明显加深,单纯骨髓间充质干细胞组可见散在阳性细胞,颜色仍较淡;各组ALP检测量随时间延长逐渐增高,各时间自体联合培养细胞组ALP最高;外周血内皮祖细胞组碱性磷酸酶没有明显变化;ALP含量在其它各组与自体联合培养细胞之间进行两两比较均有统计学意义(P<0.01)。
     (5)体外培养第3天时茜素红骨钙检测自体联合培养细胞组部分细胞阳性;7天时茜素红染色外周血内皮祖细胞组仍呈阴性反应,自体联合培养细胞组可见阳性细胞增多,有小片状细胞阳性,单纯骨髓间充质干细胞组可见颜色较淡的散在阳性细胞;14天时外周血内皮祖细胞组茜素红染色仍呈阴性,联合培养细胞组可见阳性细胞细胞增多成大片状,颜色明显加深,单纯骨髓间充质干细胞组可见多量散在阳性细胞,;随时间延长,各组OC检测量逐渐增高,14天时检测量最高,OC含量在其它各组与自体联合培养细胞之间进行两两比较均有统计学意义(P<0.01)。
     (6)实时荧光定量PCR检测显示3天、7天、14天时自体联合培养体系VEGF、 Osteonectin、Osteopotin及Collagen Type I的mRNA表达均逐渐上升,单纯骨髓间充质干细胞组恒定表达少量Osteonectin、Osteopotin及Collagen Type I,VEGF表达量较低,单纯EPCs组VEGF表达升高。其中自体联合培养体系四种因子表达量最高。
     (7)电镜观察:由猪椎骨制备部分脱蛋白骨由大量的羟基磷灰石纤维编织而成,孔隙分布均匀,纤维蛋白包被的脱蛋白生物骨表面见大量颗粒状、片状纤维蛋白,自体联合培养细胞组的细胞在骨支架上粘附生长较好,并形成团块状分布,产生大量胶原蛋白丝,单纯骨髓间充质干细胞及单纯内皮祖细胞在骨支架上粘附生长较少;
     (8)通过Wst-1检测显示,各细胞组细胞在脱蛋白生物骨上吸光度逐渐增高,在第12天达到峰值,其中自体联合培养细胞组明显升高,各细胞组之间差异有统计学意义(P<0.01):
     (9)植入新西兰大耳白兔股肌袋内的组织工程生物骨血管化情况:采用免疫组化染色检测CD105、CD34、及ZO-1的表达,结果显示第2周肉芽组织已经长入组织工程骨孔隙内,联合培养细胞组于2周、4周、8周可见阳性细胞数逐渐增多,可见薄壁的微血管形成,血管腔内可见红细胞;EPCs组见少量阳性细胞及微血管形成,单纯骨髓干细胞组阳性细胞数少,且未见明显血管管腔样结构;各时间段CD105、CD34、及ZO-1阳性表达于联合细胞组均高于单纯BMSCs组及EPCs组,差异具有统计学意义(P<0.01);
     结论:
     (1)兔外周血经密度梯度离心分离及贴壁法提纯即可获得纯度较高的EPCs,无需特殊诱导;
     (2)兔骨髓液经密度梯度离心法,并结合贴壁法扩增进行分离纯化获得的BMSCs,经免疫荧光染色鉴定为较高纯度的细胞,可在联合培养实验中应用;
     (3)外周血内皮祖细胞和骨髓间充质干细胞体外培养下,细胞促进彼此的增殖;在体外,外周血内皮祖细胞能诱导骨髓间充质干细胞成骨分化,而骨髓间充质干细胞可促进外周血内皮祖细胞微血管化,1:2比例自体联合细胞培养可以达到最好效果;
     (4)体外,骨髓间充质干细胞能促进外周血内皮祖细胞血管化的能力,自体联合细胞培养体系血管化能力最强;
     (5)外周血EPCs可促进BMSCs在骨支架上的附着和生长,自体联合培养细胞在PDPBB支架材料上的增殖优于单纯骨髓间充质干细胞和单纯外周血内皮祖细胞,12天为最佳移植时机:
     (6)在动物活体内,自体联合培养细胞组微血管化能力最强,形成微血管管腔,外周血内皮祖细胞能增强组织工程骨血管化能力,形成新生血管,建立微循环,改善组织工程骨的血液供应;
     (7)外周血内皮祖细胞与骨髓间充质干细胞联合培养体系复合PDPBB构建的组织工程骨是骨缺损修复的良好微血管化生物活性材料,具有组织相容性好,微血管化好等符合正常骨组织生理特性的优点,适合于临床实验及临床应用。
[Objective and background] Bone defect is a disease with serious appearance and function damage. China is a country with a large population, In china, there are over3million patients with the bone defect of cranium, mandibula and limb caused by disease, athletic injury, trauma, traffic accident and natural calamity, and this number are increasing10%each year with population aging. Recently, as the explosion of the research of tissue engineering, engineering bone has already began to applied to reconstruct the bone defect. But the failure of engineering bone transplantation which induced the necrosis and absorption happened frequently for insufficient angiogenesis and rejection, and the sphacelus may harm the organism in vivo. These shortcomings severely hold back the clinic research and application of engineering bone. To construct an engineering bone with good histocompatibility, low rejection and good vascularization is a keypoint for bone defect repairment with engineering bone application in clinic. In this research, an co-culture system constructed with autoallergic peripheral blood derived endothelial progenitor cells (EPCs) and autoallergic bone marrow stem cells were seeded onto partially deproteinised biologic bone, to construct an autoallergic biological engineering bone. The efficiency of BMSCs on the angiogenesis of peripheral blood EPCs, and the EPCs on the osteogenesis of BMSCs were dynamic monitored both in vitro and in vivo. This research will provide a new method of constructing a new autoallergic engineering bone with no rejection and good vascularization,
     [Methods]
     (1) Endothelial progenitor cells (EPCs) were isolated from rabbit peripheral blood and cultured in Endothelial cell medium (EGM). The expression of CD34, CD133, vWF on the third generation adherent cells were detected with immunofluorescent staining;
     (2) Bone marrow stem cells(BMSCs) were isolated from rabbit bone marrow blood and cultured in medium added1%fetal bovine serum. The expression of CD29, CD34, CD90on the third generation adherent cells were detected with immunofluorescent staining;
     (3) EPCs and BMSCs were co-cultured with the ratio of EPCs,2:1,1:2,1:1and BMSCs, the morphology change of cells were observed with inverted microscope, and the proliferation of cells in each group were evaluated by Wst-1;
     (4) Alkaline phosphatase (ALP) and Von Kossa staining of the cells in each group were performed on day3,7and14, the content of ALP and osteocalcin(OC) of the cells in each group were detected on day3,7and14with ALP Kit or OC Kit;
     (5) The total RNA of autologous co-cultured cells with best ratio, pure BMSCs and EPCs groups were extracted, and the expression of VEGF, Osteonectin, Osteopotin and Collagen Type I were detected with Real-time Fluorescent Quantitation polymerase chain reaction on day3,7and14;
     (6) The partially deproteinised biologic bone (PDPB) were prepared with fresh porcine spine bone and formed partially deproteinised biologic bone(PDPBB) with fibronectin modified, the cavity of PDPBB was observed with scanning electron microscope; The EPCs, BMSCs and the co-culture cells with the ratio1:2were seeded separately onto PDPBB materials, the growth and proliferation of cells on the PDPBB in each group were detected with Wst-1and scanning electron microscope, the most proper occasion for transplanting the biological bone back into rabbit was analyzed;
     (7)12health Newzealand white rabbit which has extracted peripheral blood and bone marrow few months ago were underwent the surgery of biological bone transplanted back into their body (PDPBB+peripheral blood EPCs; PDPBB+BMSCs; PDPBB+autologous co-culture system with best ratio with best ratio). The engineering bone were respectively transplanted into the muscle of Newzealand white rabbit (autologous co-culture system transplanted back into donor animals); the microvascularizaion were detected with Immunohistochemistry staining as CD34, CD105and ZO-1.
     [Result]
     (1) Higher purity EPCs could be isolated with Ficoll. The CD34, CD133and vWF of peripheral blood derived endothelial progenitor cells were positive with immunofluorescent staining on week3weeks;
     (2) Higher purity BMSCs could be isolated with the Ficoll. The CD29、CD34and CD90of peripheral blood derived endothelial progenitor cells were positive with immunofluorescent staining on week3weeks;
     (3) In vitro, there were many synaptics connection between cells in the autoallergic co-culture system group and some cells formed clusters on the day14. The absorbance of each group increased gradually and reached the peak on day12, and the absorbance of1:2group was highest, and there are statistical significant difference when compared with each group (P<0.01);
     (4) In vitro, ALP staining of the EPCs and BMSCs group were negative on day3, but some cells in autologous co-cultured group were positive; EPCs group were still negative on day7, some positive cells were observed in BMSCs group and more positive cells were observed in positive in the co-culture group. The ALP content of each group increased gradually and highest in the co-culture group on the day3,7and14, there are statisticly significant different between each group (P<0.01);
     (5) Von Kossa staining of the EPCs and BMSCs group were negative on day3, but some cells in autologous co-cultured group were positive; EPCs group were still negative on day7, some positive cells were observed in BMSCs group and more positive cells were observed in positive in the co-culture group. The OC content of each group increased gradually and highest in the co-culture group on the day3,7and14, there are statisticly significant different between each group (P<0.01);
     (6) The mRNA expression of VEGF, Osteonectin, Osteopotin and Collagen Type Ⅰ were gradually increased when detected on day3,7and14with Real-time Fluorescent Quantitation PCR. A few OsteonectinN Osteopotin and Collagen Type Ⅰ and lower mRNA were expressed by pure BMSCs and EPCs. The expression of VEGF, Osteonectin, Osteopotin and Collagen Type Ⅰ were highest in autologous in co-culture system, with significant statistic difference when compared with other groups (P<0.01);
     (7) The electron microscope detection:There were a large number of hydroxyapatite nets on the PDPB materials made with porcine spine bone, a lot of granular protein crystallizations were observed on the surface of PDPBB prepared with fibronectin. The growth and proliferation of cells in autologous co-culture system on PDPBB were good, and formed cell clusters. A lot of collagens were created by autoallergic co-culture system. The adhesion of pure bone marrow stem cells and EPCs on PDPBB were not as good as cells in autologous co-culture system;
     (8) The proliferation of each group on PDPBB were detected with Wst-1. The absorbance of eacg groups gradually increased and reach the peak on day12, the highest was the autologous co-culture cells group with the ratio1:2, which have significantly different when compared with each other groups (P<0.01);
     (9) The microvascularization of the engineering biological bone in vivo were observed with immunohistochemistry, and CD105、CD34、及ZO-1were detected respectly. Granulation tissues were grew into the cavity of engineering bone on week2, and the positive cells of autologous co-culture system were gradually increasing on week2,4and8, and formed some microvascular. There were some positive cells and microvascular were observed in group EPCs, fewer positive cells were observed in group BMSCs and on microvascular structures were observed in this group. The expression of CD105、CD34、及ZO-1were highest in co-cultured group with significant different compared with other groups (P<0.01);
     [Conclusion]
     (1) EPCs isolated from peripheral blood with Ficoll density gradient centrifugation were highly purified and no induction needed;
     (2) BMSCs isolated and purified with Ficoll density gradient centrifugation were highly purified and vivid;
     (3) In vitro, cells in co-culture system promote the proliferation of each other. The osteogenesis of BMSCs could be promoted by peripheral blood derived EPCs with the premium ratio1:2;
     (4) The microvascularization of EPCs can be promoted by BMSCs with the premium ratio1:2;
     (5) The proliferation and adhesion of cells on scaffold were promoted by eachother. The capability of cells growth and proliferation of autologous co-culture system were best than pure BMSCs and pure EPCs groups;
     (6) In vivo, the microvascularization of autologous co-cultured cells were best and formed lumen of vessels. EPCs could improved the blood supply for engineering bone with good angiogenesis and microcirculation capability;
     (7) The biological engineering bone constructed with peripheral blood derived EPCs, BMSCs and PDPBB are biological material with good microvasculaerization, histocompability, and suitable for clinic experiment and application.
引文
[1]中华人民共和国科学技术部.关于善待实验动物的指导性意见[OL].2006-09-30.[2008-08-15].http://www.most.gov.cn/zfwj/zfwj2006/200512/t20051214_5 4389.htm
    [2]Deng ZL, SharfF KA, Tang N, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci,2008;13:2001-2021.
    [3]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,2006;8:315-317.
    [4]Nakanishi C. Nagaya N, Ohnishi S, et al. Gene and Protein Expression Analysis of Mesenchymal Stem Cells Derived From Rat Adipose Tissue and Bone Marrow.2011, 75(9):2260-2268
    [5]Zhang Y, Shen W, Sun B, Lv C, et al. Cell Reprogram. Plasticity of Marrow Mesenchymal Stem Cells from Human First-Trimester Fetus:From Single-Cell Clone to Neuronal Differentiation.2011,13(1):57-64.
    [6]Gala K, Burdzinska A, Idziak M. et al. Characterization of bone marrow derived rat mesenchymal stem cells depending on donor age. Cell Biol Int.2011,35:1055-1062.
    [7]Jeffery J. Auletta,l Elizabeth A, et al. Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential. Stem Cells Int.2011,10:1-10.
    [8]Jung HK, Min KJ. So YL, et al. Regulation of Adipose Tissue Stromal Cells Behaviors by Endogenic Oct4 Expression Control. PLoS One.2009; 4(9):166-172.
    [9]Christian N, Charlotte S, Theresia P, et al. The Cell Surface Proteome of Human Mesenchymal Stromal Cells. PLoS One.2011;6(5):1546-1651.
    [10]Jonathan F. Human Bone Marrow-Derived Stem Cells Acquire Epithelial Characteristics through Fusion with Gastrointestinal Epithelial Cells. PLoS One.2011; 6(5):115-119.
    [11]Belmokhtar K, Bourguignon T, Worou ME, et al. Regeneration of Three Layers Vascular Wall by using BMP2-Treated MSC Involving HIF-la and Idl Expressions Through JAK/STAT Pathways. Stem Cell Rev.2011,7(4):847-859.
    [12]Dong LH, Wang Y, Lu CQ, Wang F. Effect of Astragalus mongholicus on inducing differentiations of rat bone marrow-derived mesenchymal stem cells intoneurocyte-like cells. Sichuan DaXue XueBao,2007,38(3):417-20.
    [13]Hyun JY, Sung SY, Seon YP, et al. Gene Expression Profile during Chondrogenesis in Human Bone Marrow derived Mesenchymal Stem Cells using a cDNA Microarray. J Korean Med Sci,2011,26(7):851-858.
    [14]Jia J, Cun YF, Bing FZ. Experimental Construction of BMP2 and VEGF Gene Modified Tissue Engineering Bone in Vitro. Int J Mol Sci.2011,12(3):1744-1755.
    [15]Enomoto H, Furuichi T, Zanma A, et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. Cell Sci.2004,117:417-425.
    [16]Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest.2004,113: 846-855.
    [17]Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation,2001,103 (5):634-637.
    [18]Zhang ZG, Li Z, Quan J, et al. Bone marrow derived progenitor cells Participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Cir Research,2002,90 (3):284-288.
    [19]Brendan D, Pat M, Noel M.C. Endothelial Progenitor Cells. Endothelium,2006,13(6): 403-410.
    [20]Asahara T, Mumhara T, Suilivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997,275(5302):964-967.
    [21]Liu P,Zhou B, Gu D, et a.l. Endothelial progenitor cell therapy in atherosclerosis:a double-edged sword. Ageing Res Rev,2009,8(2):83-93.
    [22]Devanesan AJ, Laughinn KA, Gim HR,et a.l. Endothelial progenitor ceils as a therapeutic option in peripheml arterial disease. Eur J Vasc Endovasc Surg,2009,38(4):478-481.
    [23]Fadini GP. Coracina A, Baesso l,et al. Peripheral blood CD34+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke, 2006,37(9):2277.2282.
    [24]Friedenstein AJ, Gorskaja U, Kalugina NN. Fibroblast Precursors in normal and irradiated mouse hematopoietic organs[J].ExpHematol,1976,4:267-274.
    [25]Gronthos S, Franklin DM, Leddy HA, etal. Surface Protein characterization of Human adipose tissue-derived stromal cells[J].J Cell Physiol,2001,189:54-63.
    [26]Igura K, Zhang X, Takahashi K, etal. Isolation and characterization of mesenchymal Progenitor cells from chorionic villi of human placenta[J]. Cytotherapy,2004,6:543-553.
    [27]Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent Mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol[J].Hum Reprod,2004,19:1450-1456.
    [28]Zvaifler NJ, Marinova-Mutafehieva L, Adams G, Edwards CJ, Moss J, Buxger JA,Main I RN.Mesenchymal Precursor cells in the blood of normal individuals[J].Arthritis Res, 2000,2:477-488
    [29]Anker PS, Noort WA, Scherjon SA,et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential[J]. Haematologica,2003, 88:845-852.
    [30]CamPagnoli C, Roberts IA, Kumar S, et al. Identification of mesenehymal stem/Progenitor cells in human first-trimester fetal blood, liver and bone marrow[J].Blood,2001, 98:2396-2402.
    [31]Chunmeng S, Tianmin C. Effects of plastic-adherent dermal multipotent cells on peripheral blood leukocytes and CFU-GM in rats[J].Transplant Proc,2004,36:1578-81
    [32]Miura M, Gronthos S, Zhao M, et al. SHEED:stem cells from human exfoliated deciduous teeth. Proc Natl Acad sci USA,2003[J],100:5807-5812.
    [33]Fridenstein AJ, Chailakllyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:In vitro cultivation and transplantation in diffusion chambers [J].Cell Tissue Kinet,1987,20:263-72.
    [34]Dazzi F, Ramasamy R, Glennie S, et al. The role of Mesenchymal stem cells in haemopoiesis [J]. Blood Rev,2006,20:161-71.
    [35]Pittenger MF, Mackay AM, Beek SC, et al. Multineage Potential of adult human Mesenchymal stem cells[J].Science,1999,284:143-7.
    [36]Devine SM, Hoffman R. Role of Mesenchymal stem cell in hematopoietic stem cell transplantation [J]. Curr Opin Hematol,2000,7:358-363.
    [37]Jeong JA, Hong SH, Gang EJ, Ahn C, Hwang SH, Yang IH, Han H, Kim H. Differential gene expression Profiling of human umbilical cord blood-derived Mesenchymal stem cells by DNA microarray[J].Stem Cells,2005,23:584-593.
    [38]Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells [J]. Blood,2001,98(9):2615.
    [39]Pittenger MF, Mackay AM, Beek SC, et al. Multilineage potential of adult human Mesenchymal stem cells[J].Science,1999,284(5411):143.
    [40]Bayes-Genis A, Roura S, Soler-Botija C, et al. Identification of cardiomyogenic lineage markers in untreated human bone marrow-derived Mesenchymal stem cells[J].Transplant Proc,2005,37(9):4077.
    [41]Cognet PA, Minguell JJ. Phenotypical and functional Properties of human bone Marrow Mesenchymal progenitor cells[J].J Cell Physiol,1999,181:67-73.
    [42]Pittenger MF, Maekay AM, Beek SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284:143-147.
    [43]BoiretN, RaPatelC, Veyrat-MassonR, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow [J].Exp Hematol, 2005,33:219-225.
    [1]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24(5):1294-1301.
    [2]Bratt-Leal AM,Carpenedo RL,McDevitt TC et al. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation.
    [3]Hyslop LA, Armstrong L, Stojkovic M, et al. Human embryonic stem cells:biology and clinical implications. Expert Rev Mol Med,2005,7(19):1-21.
    [4]Wang QR, Wang F, Zhu WB, et al. GM-CSF accelerates proliferation of endothelial progenitor cells from murine bone marrow mononuclear cells in vitro. Cytokine,2009,45 (3):174-178.
    [5]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999, 18(14):3964-72.
    [6]Iris G, Rajesh KG, Simon JP, et al. Bone Marrow Stromal Cell-Derived Vascular Endothelial Growth Factor (VEGF) Rather Than Chronic Lymphocytic Leukemia (CLL) Cell-Derived VEGF Is Essential for the Apoptotic Resistance of Cultured CLL Cells. Mol Med.2011 Jul-Aug; 17(7-8):619-627.
    [7]Kohama T, Handa H, Harigaya K. A burst-promoting activity derived from the human bone marrow stromal cell line KM-102 is identical to the granulocyte-macrophage colony-stimulating factor. Exp Hematol.1988,16(7):603-8.
    [8]Kivanc A, Ru L, Duncan JS, et al. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. Journal of Orthopaedic Research,2010,28 (8):1007-1014.
    [9]李彦林,杨志明,解慧琪等,生物衍生组织工程支架材料的制备及理化特性。生物医学工程学杂志,2002;19(1)10-12
    [10]周峰任永信范卫民.纤维粘连蛋白修饰的多孔PL GA对大鼠骨髓间充质干细胞粘附和增殖的影响.江苏医药,2005;31(7):519-520
    [11]李秀兰高承志.纤维粘连蛋白影响成骨细胞增殖和I型胶原表达的研究.现代口腔医学杂志,2008;22(4):392-394
    [12]王福科,刘流,李彦林,等.骨髓基质干细胞与PDPB体外构建组织工程骨的适宜条件.中国组织工程研究与临床康复,2008,12(33):6401-6405
    [13]李娟,王克华,张丽红等.人类早期胚胎与体细胞共培养的研究进展.国际生殖健康/计划生育杂志,2009,28(2):99-102.
    [14]高毅,蒋泽生,慕宁.人骨髓来源多能成体祖细胞与人肝细胞系体外问接共培养向肝样细胞分化的实验研究.中华肝胆外科杂志,2007,13(2):124-127.
    [15]韩翠萍,刘吉勇,高蕾等.人脐血间充质干细胞向类肝细胞分化人肝细胞共培养诱导法的可行性.中国组织工程研究与临床康复,2010,14(1):48-52.
    [16]高大宽,章翔,费舟等.脂肪干细胞诱导神经于细胞分化的体外实验研究[J].中华神经外科疾病研究杂志,2010,9(2):120-123.
    [17]朱彤,崔志利,马丽娜,薛峥,石艳红,惠延年.共培养系统中巨噬细胞对大鼠视网膜神经节细胞存活和轴突再生的影响.中华眼视光学与视觉科学杂志,2010,12(2):118-121.
    [18]解杰,陈安民,郭风劲,王建超,廖晖,柳昊,等.利用藻酸盐与骨髓问充质干细胞及前列腺癌细胞混合培养:观察干细胞对癌细胞增殖速度及成簇大小的影响.中国组织工程研究与临床康复,2010,14(6):1009-1014.
    [19]李全修,陈伯华,蔡月艳.新式分层共培养环境下人骨髓间充质干细胞诱导髓核细胞的分化[J].中国组织工程研究与临床康复,2010,14(1):53-56.
    [20]岳才军,臧忠婧,何彦平等.共培养影响植物次级代谢产物生产的研究进展.安徽农学通报,2010,16(10):26-28.75.
    [21]方静,谌贻璞,张嫩.通过共培养观察被马兜铃酸活化后的肾小管上皮细胞对肾间质成纤维细胞的作用.中华肾脏病杂志,2004,20(5):321-324.
    [22]王义,杨晶,孙春玉等.人参与胡萝混合培养物的代谢产物研究.食品科学,2008,29(2):126-129.
    [23]王东旭,姜海行,苏思标,覃山羽,梁梓字.体外共培养大鼠骨髓间充质干细胞对肝星状细胞增殖的影响:cyclinDl与P27表达调控.中国组织工程研究与临床康复,2010,14(10):1764-1768.
    [24]Bhandari RN, Riccalton LA Jewis AL, et al.Liver tissue engineering:a role for co-culture systems in modifying hepatocyte function and viability. Tissue engi,2001,7(3):345-357.
    [25]于聪慧,林梅,梅建等.肝细胞、胰岛细胞与储脂细胞共培养对肝细胞功能的影响.世 界华人消化杂志,2004,12(11):2731-2733.
    [26]Spandorfer SD, Pascal P, Parks J, et al. Autologous endometrial coculture in patients with IVF failure:outcome of the first 1030 cases. J Report Med,2004.49(6):463467.
    [27]Mercader A, Garcia JA, Escudero E, et al.Clinical experience and perinatal outcome Of blastocyst transfer after cocuhure of human embryos with human endometrial epithelial cells:a 5-year follow-up study. Fertilsteril,2003,80(5):1162-1168.
    [28]J00 Bs, Kim Mk, Na YJ, et al.The mechanism Of action of coculture on embryo develepment in the mouse model:direct embryo-to-ce Ⅱ contact and the removal Of deletedous components. Fertil steril,2001,75(1):193-199.
    [29]Tan XW, Ma SF, Yu JN, et al. Effect of species alld ceUlllar activity Of Oviductal epithelial cells on their dialogue with co-cultufed mouse embryos. Cell Tissue Res,2007,327(1): 55-56.
    [30]Heydarkhall HS, Helenius G, JOharlsson BR, et al. Co-culture of endotllelial cells and smooth muscle cells affects gene expression of angiogenic factors. J Cell Biochem,2003, 89(6):1250-1259.
    [31]Khodarev NN, Yu J, Labay E, et al. Tumour-endothelium intefactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci,2003,116(Pt6):1013-1022.
    [32]Bhatia sN, Yarmush ML, Toner M. Controling cell interactionsby micropatteming in co-culture:hepatocytes and 3T3 fibroblast.J Biomed Mater Res,1997,34(2):189-199.
    [33]Orwin EJ, Hubel A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cell in a naive collagen matrix. Tissue Eng,2000,6(4):307-319.
    [34]Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology,2002; 143(4):1545-1553
    [35]Murota SI, Onodera M, Morita I. Regulation of angiogenesis by controlling VEGF receptor. Ann N Y Acad Sci,2000; 902:208-212; discussion 212-213
    [36]Palmieri D, Camardella L, Ulivi V, et al.Trimer carboxyl propeptide of collagen I produced by mature osteoblasts ischemotactic for endothelial cells. J Biol Chem,2000; 275(42):32658-32663
    [37]Velazquez OC, Snyder R, Liu ZJ, et al. Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J,2002; 16(10):1316-1318
    [38]Philippe P, Frank P, Simone MP, et al.Influences of visualization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. Plast Reconstr Surg,2003; 111(6):1932-1941
    [39]Villars F, Bordenave L, Bareille R, et al. Effect of human endothelial cells on human bone marrow stromal cell phenotype:role of VEGF. J Cell Biochem,2000; 79(4):672-685
    [40]Choong CS, Hutmacher DW, Triffitt JT. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng,2006; 12(9):2521-2531
    [41]Alma JN, Geert W, Alwine B. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 2006,108:2114-2120.
    [42]李彦林,杨浩,韩睿,等.三种生物骨衍生材料早期外周血T淋巴细胞亚群的变化.中华创伤骨科杂志,2004;6(10):1160-1163
    [43]李彦林,杨志明,解慧琪,等.生物衍生骨支架材料的体外细胞相容性实验研究.中国修复重建外科杂志,2001;15(4):227-231
    [44]杨浩,李彦林,韩睿,等.异种骨衍生材料修复节段性骨缺损的实验研究.昆明医学院学报,2004;25(1):14-18
    [45]Moursi AM, Globus RK, Damsky CH. Interactions between integrin recep to rs and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci,1997; 110 (18):2187-2196
    [46]Globus RK, Doty SB, Lull JC, et al. Fibronectin is a survival factor for differentiated o steoblasts. J Cell Sci,1998; 111 (10):1385-1393
    [47]Goto T, YoshinariM, Kobayashi S, et al. The initial attachment and subsequent behavio r of o steoblastic cells and oral epithelial cells on titanium. BiomedM ater Eng,2004;14 (4): 537-544
    [48]Siebers MC, ter Brugge PJ, Walboomers XF, et al. Integrins as linker proteins between osteoblasts and bone replacing materials. Biomaterials,2005; 26 (2):137-146
    [49]Cutler SM, Garcia AJ. Engineering cell adhesive surfaces that direct integrin alphaS betal binding using a recombinant fragment of fibronectin. Biomaterials,2003;24 (10):1759-1770
    [50]肖国衡.纤维粘连蛋白的病理生理.四川生理科学杂志,2000;22(2):19
    [51]冯立,曹晓建,任永信.纤维粘连蛋白与硷性成纤维细胞生长因子对成骨细胞黏附的协同刺激作用.中国修复重建外科杂志,2007;21(4):390-395
    [52]Moursi AM, Damsky Ch, Lull J, et al. Fibronectin regulates calvarial osteoblast differentiation. J Cell Sci,1996; 109 (6):1369-1380
    [53]Globus RK, Doty SB, Lull JC, et al. Fibronectin is a survival factor for differentiated osteoblasts. J Cell Sci,1998;111 (10):1385-1393
    [54]Garcia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res,2005;84 (5):407-413
    [55]Kim E, Jeon IS, Kim JW,et al. An MTT-based method for quantification of periodontal ligament cell viability. Oral Dis,2007; 13(5):495-499.
    [56]Bauer, T, Muschler, G. Bone Graft Materials:An Overview of the Basic Science. Clinical Orthopaedics & Related Research,2000,371:10-27.
    [57]Linares A, Cortellini P, Lang NP, et al. Guided tissue regeneration/deproteinized bovine bone mineral or papilla preservation flaps alone for treatment of intrabony defects. Ⅱ:radiographic predictors and outcomes. J Clin Periodontol,2006,33:351-358.
    [58]Wang QR, Wang F, Zhu WB, et al. GM-CSF accelerates proliferation of endothelial progenitor cells from murine bone marrow mononuclear cells in vitro. Cytokine,2009,45 (3):174-178.
    [59]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999, 18(14):3964-72.
    [60]Iris G, Rajesh KG, Simon JP, et al. Bone Marrow Stromal Cell-Derived Vascular Endothelial Growth Factor (VEGF) Rather Than Chronic Lymphocytic Leukemia (CLL) Cell-Derived VEGF Is Essential for the Apoptotic Resistance of Cultured CLL Cells. Mol Med.2011 Jul-Aug; 17(7-8):619-627.
    [61]Kohama T, Handa H, Harigaya K. A burst-promoting activity derived from the human bone marrow stromal cell line KM-102 is identical to the granulocyte-macrophage colony-stimulating factor. Exp Hematol.1988,16(7):603-8.
    [62]Kivanc A, Ru L, Duncan JS, et al. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. Journal of Orthopaedic Research,2010,28 (8):1007-1014.
    [1]于德水,吕刚,曹阳,等.BMSCs移植对大鼠脊髓损伤后VEGF基因和血管生成的影响[J].中国修复重建外科杂志,2011,25(7):837-841.
    [2]Li B, Sharpe EE, Maupin AB. VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization.FASEB J.2006,20(9):1495-1497.
    [3]Asahara T, Takahashi T, Masuda H. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999, 18(14):3964-7392.
    [4]孔霞,郑飞,郭凌郧,等.VEGF通过细胞外信号调节激酶途径促进骨髓源间充质干细胞的增殖[J].中国实验血液学杂志,2010,18(5):1292-1296.
    [5]Stahl A, Wu X, Wenger A, et al. Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts:a model for bone replacement grafts. FEBS Lett, 2005,579(24):5338-5342.
    [6]Philippe P,Frank P,Simone MP,et al.Influenees of visualization and osteogenic cells on Heterotopic bone formation within a madreporic ceramic in rats. Plast Reconstr Surg.2003;111(6):1932-1941.
    [7]Emes Y,Aybar B,Vural P,et al.Effects of bone morphogenetic proteins on osteoblast cells: vascular endothelial growth factor, calcium, inorganic phosphate, and nitric oxide levels. Implant Dent.2010;19(5):419-427.
    [8]Palmieri D,Camardella L,Ulivi V,et al.Trimer carboxyl Propeptide of collagen I produced by Mature osteoblasts ischemotactic for endothelial cells. Biol Chem.2000;275(42): 32658-32663.
    [9]Velazquez OC,Snyder R,Liu ZJ,et al. Fibroblast-dependent differentiation of human Microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J,2002; 16(10):1316-1318.
    [10]Xiao C,Zhou H,Liu G,et al.Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration.Biomed Mater.2011;6(1):015013.
    [11]Saleh FA,Whyte M,Genever PG,et al.Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater.2011;22:242-257.
    [12]Finkenzeller QArabatzis QGeyer M,et al.Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture mode.Tissue Eng.2006; (10):2889-2903.
    [13]Duzonghai, Wanghailong, Songjiang,et al. Biological characteristics and application of adult bone marrow mesenchymal stem cells in tissue engineering and regenerative medicine.Journal of Clinical Rehabilitative Tissue Engineering Research.2009,13 (33):6553-6554.
    [14]Li XD, Chen J, Ruan CC, et al. Vascular endothelial growth factor-induced osteopontin expression mediates vascular inflammation and neointima formation via Flt-1 in adventitial fibroblasts. Arterioscler Thromb Vase Biol.2012,32(9):2250-2258.
    [15]Chakraborty G, Jain S, Kundu GC. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis viaautocrine and paracrine mechanisms. Cancer Res.2008,68(1):152-61.
    [16]Egusa H, Iida K, Kobayashi M, et al. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow-and adipose tissue-derived stromal cells. Nishimura I Tissue Eng,2007(13):2589-2600.
    [17]Mario Gossl, Ulrike I. M6dder, Elizabeth J. Atkinson, et al. Osteocalcin Expression by Circulating Endothelial Progenitor Cells in Patients with Coronary Atherosclerosis J Am Coll Cardiol.2008,52(16):1314-1325.
    [18]Suda T, Takashi N. Osteoblasts are essential for osteoclast formation. Calcif Tissue Int, 1989:44(1):45-47.
    [19]Caplan AI. Cartilage begets bone versus endochondral myelopoiesis. Clin Orthop Relat Res. 1990;(261):257-267.
    [20]Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal cells into Porous hydroxyapatite scaffolds for bone tissue engineering J Bio sci Bioeng, 2007;104(3):171-177.
    [21]Liu TM, Martina M. Hutlnaeher DW, et al. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human Mesenchymal stem cells into three Mesenchymal lineages. Stem Cells,2007;25(3):750-760.
    [22]Noel D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and Mesenchymal-stromal cells despite similar differentiation potentials.Exp Cell Res,2008;314(7):1575-1584.
    [23]Yoshimura H, Muneta T, Nimura A, et al.Comparison of rat Mesenchymal stem cells derived from bone marrow, synovium, Periosteum, adipose tissue, and muscle. Cell Tissue Res,2007;327(3):449-462.
    [24]Jonas M, Olle R, Rainer S. Graft Failure after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant,2008,14(S1):165-170.
    [25]Alma JN, Geert W, Alwine B. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 2006,108:2114-2120.
    [1]金丹,陈滨,裴国献等.筋膜瓣促组织工程骨再血管化及山羊长段骨缺损的修复[J].中华实验外科杂志,2005,22(3):269-271.
    [2]王永刚,裴国献.血管束植入在组织工程骨血管化构建中的作用.解放军医学杂志,2007,32(1):26-28.
    [3]Aldinger G, Herr G, Kusswetter W. Bone morphogenic protein:areview.InterOrthop,1991, 15 (2):169.
    [4]Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am,2001,83-A (Suppl 1):S105-115.
    [5]Pu LL, Holme KR, Symes JF. Heparinase enhances collateral vessel development in the ischemie limb. Int Surg,2002,87 (4):260-268.
    [6]Philippe P, Villars F, Mathoulin-Pelissier S. Influences of vascularization and osteogenic cell on heterotopic bone formation within amadreporic ceramic in rats. Plast Reconstr Surg, 2003,111 (6):1932-1941.
    [7]Pieper JS, van Wachem PB, van Luyn MJA, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue responsein rats. Biomaterials,2000,21 (6): 1689-1699.
    [8]中华人民共和国科学技术部.关于善待实验动物的指导性意见[OL].2006-09-30.[2008-08-15].http://www.most.gov.cn/zfwj/zfwj2006/200512/t20051214_5 4389.htm
    [9]王福科,刘流,李彦林,等.骨髓基质干细胞与PDPB体外构建组织工程骨的适宜条件,中国组织工程研究与临床康复,2008;12(33):6401-6405
    [10]Marina I, Rui L. Vascularization in bone tissue engineering:physi0109y, current strategies, major hurdles and future challenges. Macroml Biosci,2010,11:10(1):12-27.
    [11]Rouwkema J, Rivron NC, Clemens A, et al. Vascularization in tissue engi neering. Trends in Biotechnoloy,2008,26(8):434-441.
    [12]Liu H, Ma PX. Polymeric Scaffolds for Bone Tissue Engineering. Annals of Biomedical Engineering,2004,32(3):477-486.
    [13]Grellier M, Ferreira N, Bourget C, et al. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. Cell Biochem, 2009,106:390-398.
    [14]Kanczler JM, Oreffo R. Osteogensis and Angiogenesis:The Potential for Engineering Bone. European Cells and Material,2008,15,100-114.
    [15]Colnot C, Romero DM, Huang S, et al. Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects. Clin Orthop Relat Res,2005,435:69-78.
    [16]Schmid J, Wallkamm B, Hammerle CH, et al. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res,1997,8: 244-248.
    [17]Trueta J. The role of the vessels in osteogenesis. Journal of Bone and Joint Surgery Series, 1963,45:402-418.
    [18]Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res,2006,21: 183-192.
    [19]Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature,2005,438:937-945.
    [20]Jain RK. Molecular regulation of vessel maturation. Nat Med,2003,9:685-693.
    [21]Wang DS, Yamazaki K, Nohtomi K, et al. Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells. J Bone Miner Res,1996,11 (4):472-479.
    [22]肖仕辉,韦积华,韦庆军.组织工程骨血管化的研究新进展.广东医学,2012,33(11):1680-1682.
    [23]Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future direction. Clin Orthop.1983;174:58-68.
    [24]Muscolo DL, Schajowecz CE. Tissue-typing in human massive allografts of frozen bone. J Bone Joint Surg (Am).1987,69:583-595.
    [25]Czitrom AA, Axelrod T, Fernandes B. Antigen presenting cells and bone allotransplantation. Clin Orthop.1985;197:27-31.
    [26]陆军,吴苏稼,施鑫.同种异体骨移植的免疫反应[J].中国矫形外科杂志,2002,9(4):388-391.
    [27]孙世荃.同种异体骨移植的免疫排斥[J].中华骨科杂志,2001,21(5):308-310.
    [28]Rekhter, Collagen synthesis in atherosclerosis:too much and not enough. Cardiovascular research.1999,41(2):376-384.
    [29]Twardowski T, Fertala A, Orgel JP, et al. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des,2007,13(35):3608-3621.
    [30]Holger G, Matthew G, Marcus F, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. JCB,2003,161(6):1163-1177.
    [31]Lamalice L, Boeuf FL, Jacques H, et al. Endothelial Cell Migration During Angiogenesis. Circulation Research.2007,100:782-794
    [32]David SG. The Molecular Perspective:VEGF and Angiogenesis. The Oncol,2002,7(6): 569-570.
    [33]Meit B, Renhai C, Anna E, et al. Blockage of VEGF-Induced Angiogenesis by Preventing VEGF Secretion. Circul Res.2004,94:1443-1450
    [34]Marc P, Walter S, Fred TB, et al. Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues. J Histochem Cytochem,2006,54(4):385-395.
    [35]Duff S, Li C, Garland JM, et al. CD105 is important for angiogenesis:evidence and potential applications. The FASEB,17(9):984-992
    [36]Chenggang L, Razao I, Pat K. CD 105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci,2003,116 (13):2677-2685.
    [1]Pillai RG. Stem cells for ocular tissue engineering and regeneration. Curr Top Med Chem.2011,11 (13):1606-1620.
    [2]Sodian R, Lemke T, Fritsche C, et al. Tissue-engineering bioreactors:a new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng.2002, 8(5):863-870
    [3]Smith MK, Mooney DJ. Hypoxia leads to necrotic hepatocyte death. J Biomed Mater Res A. 2007,80(3):520-529
    [4]Mirensky TL, Hibino N, Sawh-Martinez RF, et al. Tissue-engineered vascular grafts: does cell seeding matter? J Pediatr Surg.2010,45(6):1299-1305
    [5]Yu H, Vandevord PJ, Gong W, et al. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derivedendothelial cells. J Orthop Res.2008, 26(8):1147-1152
    [6]Ji-Young Kim, Chan Do Park, Joon Ho Lee, et al. Co-culture of Melanocytes with Adipose-derived Stem Cells as a Potential Substitute for Co-culture with Keratinocytes. Acta Derm Venereol,2012,92(1):16-23
    [7]Dapeng Liao, Ping Gong, Xiaojie Li, et al. Co-culture with Schwann cells is an effective way for adipose-derived stem cells neural transdifferentiation. Arch Med Sci,2010,6 (2):145-51
    [8]Yoshida A, Kitajiri S, Nakagawa T, et al. Adipose tissue-derived stromal cells protect hair cells from aminoglycoside. Laryngoscope.2011,121(6):1281-6
    [9]Ewa Przybyt, Guido Krenning, Marja GL Brinker, et al. Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erkl/2. J Transl Med.2013,13:11-39.
    [10]Zhao, Xian, Liu Liu, Wang Fu-Ke, et al. Coculture of Vascular Endothelial Cells and Adipose-Derived Stem Cells as a Source for Bone Engineering. Ann Plast Surg,2012,69(1): 91-98.
    [11]Masashi Takedaa, Marii Yamamotoa, Katsuhiro Isodaa, et al. Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice. J Biosci Bioeng,2005,100 (1):77-81.
    [12]Weimin Deng, Qin Han, Lianming Liao, et al. Effects of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells on T and B Lymphocytes from BXSB Mice. DNA and Cell Biology. 2005,24(7):458-463.
    [13]Thompson AD, Betz MW, Yoon DM, et al. Osteogenic differentiation of bone marrow stromal cells induced by coculture with chondrocytes encapsulated in three-dimensional matrices. Tissue Eng Part A.2009,15(5):1181-1190
    [14]Tian H, Bharadwaj S, Liu Y, et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells:potential for urological tissue engineering. Tissue Eng Part A, 2010,16(5):1769-79
    [15]Meifeng Xu, Maqsood Wani, Yan-Shan Dai, et al.Differentiation of Bone Marrow Stromal Cells Into the Cardiac Phenotype Requires Intercellular Communication With Myocytes. Circulation,2004,110:2658-2665
    [16]Ramsauer M, Krause D, Dermietzel R, et al. Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J,2002,16(10):1274-1276
    [17]Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun,2010,400(2):284-91.
    [18]Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation.2003, 107(7):1024-1032
    [19]Zhao X, Briggs S, Belovay G, et al. Endothelial Precursor Cells Regulate the Cellular Phenotype of Retinal Stem Cells. Invest Ophthalmol Vis Sci,2005,46:4198-B556
    [20]Ye C, Bai L, Yan ZQ, et al. Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cellsvia activation of Akt. Clin Biomech. 2008,1:S118-124.
    [21]Taqvi S, Roy K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouseembryonic stem cells.Biomaterials.2006,27(36): 6024-6031.
    [22]Schmitt TM, de Pooter RF, Gronski MA, et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol.2004,5(4):410-417
    [23]Banerjee I, Sharma N, Yarmush M. Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med.2011,5(4):313-323
    [24]Usuludin SB, Cao X, Lim M. Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia. Biotechnol Bioeng.2012,109(5):1248-1258
    [25]Heydarkhan-Hagvall S, Helenius G, Johansson BR, et al. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J Cell Biochem,2003, 89(6):1250-1259
    [26]Oberringer M, Meins C, Bubel M, et al. A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell.2007,99(4):197-207
    [27]Sorrell JM, Baber MA, Caplan AI. Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture:nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen.2008,16(2):300-309
    [28]Bachelet I, Munitz A, Levi-Schaffer F. Co-culture of mast cells with fibroblasts:a tool to study their crosstalk. Methods Mol Biol,2006,315:295-317
    [29]Chao KC, Chao KF, Chen CF, et al. A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters. Cell Transplant,2008, 17(6):657-664
    [30]Dissanayaka WL, Zhan X, Zhang C, et al. Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod,2012,38(4):454-463
    [31]Chung D, Das SK. Mouse primary uterine cell coculture system revisited:ovarian hormones mimic the aspects of in vivo uterine cell proliferation. Endocrinology.2011,152(8):3246-3258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700