改性双季铵盐的合成及其在油田水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对油田回注水中SRB、TGB等微生物对注水设备和管线造成严重腐蚀,又由于微生物产生耐药性导致常用杀菌剂投加量升高、处理成本攀升甚至处理后水质不能达标等问题,以环氧氯丙烷(ECH)、十二烷基二甲基胺(DMA12)和甲硝唑(MDZ)为原料,合成了一种新型杀菌剂——改性双季铵盐MHTD。本文对MHTD的合成工艺进行了研究,并对MHTD的杀菌性能、缓蚀性能、表面活性及其做为杀菌剂与其它水处理剂的配伍性进行了探讨。研究结果表明:
     合成MHTD分三步进行,首先DMA12和氯化氢反应生成叔胺盐酸盐(DMAH),然后ECH与DMAH反应制得中间体N-(3-氯-2-羟丙基)-N,N-二甲基十二烷基氯化铵(CHAC),最后CHAC与MDZ反应得MHTD。CHAC的最佳合成工艺条件为:n(DMAH): n(DMA12):n (ECH)=1:0.15:1.10.温度40℃, CHAC的最高收率达93.5%; MHTD的最佳合成工艺条件为:乙腈作溶剂、反应物物质的量之比n (MDZ):n (CHAC)=1.2:1、反应温度80℃、反应时间12 h,收率达82.4%,应用熔点测定和红外光谱分析方法证明合成的产物就是设计的目标产物甲硝唑改性双季铵盐MHTD。
     MHTD的杀菌性能研究表明:MHTD浓度越高杀菌率越高,当浓度为30 mg/L时,SRB和TGB的杀菌率分别为99.99%和99.14%,达到油田回注水水质要求,较同等浓度的常用杀菌剂1227分别提高了63%和99%,当浓度为40 mg/L时,SRB和TGB的杀菌率均达到100%;菌药接触时间在48 h内MHTD对SRB、TGB的杀菌率均保持在90%以上:MHTD对矿化度1×104~1×105 mg/L、温度30-60℃、pH 5.5到8.5的油田污水均有良好的适应性,与现场所应用的缓蚀剂和阻垢剂具有良好的配伍性。
     应用静态挂片法和动电位电化学法对MHTD进行了缓蚀性能评价,当浓度为50mg/L在矿化度为8.68×104 mg/L的模拟盐水中对A3钢的缓蚀率分别达77.2%和71.2%。测得MHTD的CMC值为0.77 mmol/L, CMC值下的表面张力为34.14mN/m。
SRB, TGB and other microbes in oilfield reinjection water could cause corrosion of injection equipments and pipelines. However, the microbes would contain genes conferring resistance on biocide, resulting in increasing in MIC of common biocide and treatment costs and even that the treated water couldn't meet the criteria. Aiming at solving this problem, one novel biocide, the modified bis-quaternary ammonium salt MHTD was synthesized by using epichlorohydrin (ECH), N,N-dimethyl dodecyl amine (DMA 12) and metronidazole (MDZ) as raw materials. In this paper, the synthesis process conditions, bactericidal properties, corrosion inhibition, surface activity of MHTD were studied, as well as compatibility with other wastewater treatment agents. The results show that:
     It took three steps to synthesis MHTD. First, DMA 12 combined with hydrogen chloride to form N, N-dimethyl dodecyl amine hydrochloride (DMAH). Second, DMAH reacted with ECH to produce the intermediate product of CHAC (N-(3-chloro-2-hydroxypropyl)-N, N-dimethyl dodecyl ammonium chloride). At last, MHTD was obtained from the reaction of CHAC and MDZ. The yield of CHAC could reach the best of 93.5% in the conditions of reaction temperature at 40℃and the molar ratio of reactants n(DMAH): n(DMA12):n(ECH) at 1:0.15:1.10. The best yield of MHTD reached 82.4% in acetonitrile with the conditions of the reaction temperature at 80℃, the molar ratio of reactants n(MDZ):n(CHAC) at 1.2:1 and reaction time of 12 h. The product structure of MHTD was detected by IR spectrum and melting point apparatus, the result was coined with the primary design.
     The results of the bactericidal properties study show that: the bactericidal rate is increasing with the concentration of MHTD; the bactericidal rates could reach 99.99% and 99.14% to SRB and TGB respectively when the concentration of MHTD is 30 mg/L, which meet to the water injection requirements and 63% and 99% more than 1227 at the same concentration; MHTD had a bactericidal rate up to 100% to SRB and TGB in the concentration of 40 mg/L. The bactericidal rate of MHTD to SRB and TGB maintained above 90% within the contacting time of bacterium and drug at 48 h. MHTD is perfectly adapted to oilfield wastewater with salinity from 1×104 mg/L to 1×105 mg/L, temperature of 30℃to 60℃and pH of 5.5 to 8.5. Furthermore, it has good compatibility with the corrosion inhibitor and scale inhibitor applying in oilfield.
     The corrosion inhibition of MHTD was evaluated by the static hanging experiments and potentiodynamic electrochemical test. The results demonstrate that MHTD with the concentration of 50 mg/L has corrosion rates of 77.2% and 71.2% respectively to A3 steel in 8.68×104 mg/L salinity simulated salt water. The CMC and ys(CMC) of MHTD are 0.77 mmol/L and 34.14 mN/m respectively.
引文
[1]肖稳发,岳前声,向兴金.油田水杀菌剂现状及发展趋势[J].辽宁化工,1999,28(26):316-321.
    [2]聂臻,姚占力,牛自德,等.油田注水用杀菌剂在我国的应用及发展[J].石油与天然气化工,1999,28(4):304-307.
    [3]中华人民共和国石油天然气行业标准.SY/T5329-1994,碎屑岩油藏注水水质推荐指标及分析方法[S].北京:中国标准出版社,1994.
    [4]张英菊,苗尉荣,李宗石.新型油田杀菌剂的合成[J].精细化工,1992,9(2):5-9.
    [5]沈丽娜,完颜华.循环冷却水杀菌剂的发展[J].甘肃科技,2003,19(8):52-53.
    [6]于亮,李佰广,孙琦.硫酸盐还原菌引起的腐蚀及微生物防控研究进展[J].辽宁化工,1996,38(60):35-38.
    [7]朱绒霞,那静彦,郭生武,等.硫酸盐还原菌的腐蚀机理[J].空军工程大学学报(自然科学版),2000,1(3):10-12.
    [8]岳建平,王玉春,杨暹.油田污水中硫酸盐还原菌腐蚀研究[J].榆林学院学报,2006,16(2):15-17.
    [9]魏跃进,郝明圈,王凤清,等.C102复合解堵工艺技术[J].石油钻采工艺,2001,23(4):66-67.
    [10]裴建平,高秀莲.有机溴杀菌剂工业应用效果与评价[J].工业水处理1998,18(6):40-46.
    [11]姚成,王锦堂,朱红军.杀菌剂改性季鳞盐及其制备方法[P].中国专利:981115527,1993-6-23.
    [12]Finn, John Yu, Xiang Yang Wang. Heterocycles As Antimicrobial Agents[P].美国专利:6153645,2000-11-28.
    [13]肖稳发,岳前声,向兴金.油田水杀菌剂现状及发展趋势[J].辽宁化工,1999,28(6):316-321.
    [14]尹华,肖锦.多功能水处理剂研究进展[J].工业水处理,1995,15(2):1-4.
    [15]梁诚.含氟杀菌剂研究开发与生产现状[J].有机氟工业,2004(1):29-31.
    [16]陈子涛.季胺盐杀菌剂[J].工业水处理,1985,5(5):30-32.
    [17]L.Massi, F.Guittard, S.Geribaldi, et al. Amtimicrobial Properties of Highly Fluorinated Bisammouium Salts[J]. International Journal of Antimicrobial,2003,21:20-26.
    [18]衷平海.表面活性剂原理与应用配方[M].南昌:江西科学技术出版社,2005,5:274,402.
    [19]聂臻,姚占力,牛自得.我国油田注水用杀菌剂的应用现状及发展趋势[J].油气田地面工程,1995,18(3):1-4.
    [20]钟声,王伟,朱建民.Gemini表面活性剂的研究进展[J].鞍山科技大学学报,2006,29(2)124-132.
    [21]宁廷伟.注入水杀菌剂在胜利油田的应用和发展[J].油田化学,1998,15(3):285-288.
    [22]Menger F M, Littau C A. Gemini Surfactants:Synthesis and Properties [J]. J Am Chem Soc,1991, 113:1451-1452.
    [23]梅平,段明峰,熊洪禄,等.双季铵盐的合成试验研究[J].长江大学学报(自科版),2005,2(7):204-207.
    [24]龚丽芳,倪人捷,黄煜.双季铵盐表面活性剂对涤纶织物的抗静电性能[J].纺织学报,2008,29(5):72-74.
    [25]王祥荣.阳离子Gemini型表面活性剂的合成及其应用性能研究.印染助剂,2002,19(1):12-15.
    [26]孟蕾.环氧丙基三烷基季铵盐和Gemin季铵盐的合成及性能研究[D].东营:中国石油大学,2004.
    [27]段明峰,梅平,孙勇,等.新型缓蚀杀菌剂双季铵盐在油田中的应用[J].石油化工腐蚀与防护,2005,22(2):11-14.
    [28]徐群,曹明丽,马文辉,等.非对称双子季铵盐阳离子表面活性剂的合成及性能[J].日用化学工业,2004,34(5):280-282.
    [29]孟琳,周丽萍,葛双启,等.双季铵盐杀菌剂的合成及其杀菌性能的研究[J].化学工程师.2005,115(4):59-60.
    [30]王昶.双季铵盐杀菌剂的杀菌试验研究[J].工业用水与废水,2000,31(6):23-24.
    [31]Archouri M EL, Infante M R, Izquierdo F, et al. Understanding the Adsorption of Cationic Gemini Surfactants on Steel Surface in HydrochloricAcid [J]. Materials Chemistry and Physics,2004,87 (2-3):237-240.
    [32]黄金营,郑家粲,魏慧芳.培养基介质中MBQA对TGB菌的抑制机理及模型[J].郑州大学学报(大学版),2004,25(3):33-37.
    [33]才程,葛际江.孪二连季铵盐表面活性剂[J].油田化学,2001,18(3):278-282.
    [34]姚同玉,刘福海,刘卫东.季铵盐型表面活性剂的驱油机理研究[J].西南石油学院学报,2003,25(6):43-45.
    [35]毕只初,廖文胜.CTBA在硅胶表面吸附引起的润湿性变化和模拟驱油[J].物理化学学报,2002,18(11):962—966.
    [36]杨燕,刘永兵,蒲万芬.双子表面活性剂的研究进展[J].油气地质与采收率,2005,12(6)67-70.
    [37]王永君.双季铵盐的合成及污水浮选性能考察[J].精细化工,2002,19(2):85-87.
    [38]贾丽华,郭祥峰,于宏伟,等.含酯基双子季铵盐阳离子表面活性剂的合成及性能[J].日用化学工业,2002,32(3):34-35.
    [39]贾丽华,郭祥峰,陈华群,等.壬基酚为原料合成双季铵盐[J].精细化工,2001,18(10):576-578.
    [40]刘慷慨,高保娇,李蕾.可聚合双季铵盐阳离子表面活性剂[J].石油化工,2006,35(11)1082-1085.
    [41]徐群,徐孙见,邢凤兰.含酯基非对称Gemini季铵盐表面活性剂的合成及表征[J].化学世界,2008, (13):158-160.
    [42]蒋晓慧,周丽梅,胡星琪,等.含吡啶环的双子季铵盐表面活性剂及其制备方法[P].CN1557535,2004-1-29.
    [43]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(1)—从长链烷基二甲基胺及其盐酸盐和环氧氯丙烷合成双烷基双季铵盐阳离子[J].日用化学工业,2001, (3):27-30.
    [44]郑静,周飞,张威.两种含羟基双季铵盐杀菌剂的合成与固定化[J].日用化学工业,2007,37(2):93-96.
    [45]黄金营.含咪唑杂环的长链烷基双季铵盐的合成及其特性研究[D].武汉:华中科技大学,2005.
    [46]余鹏.双(二羟乙基烷基)乙撑双季铵盐的合成及性能评价[D].南充:西南石油学院,2005.
    [47]黄金营,郑家燊,魏慧芳,等.甲硝唑双季铵盐杀菌剂的合成及性能研究[J].工业水处理,2003,23(10):5-47.
    [48]Yuhai Sun, Yujun Feng, Hongwei Dong. Synthesis and Aqueous Solution Properties of Homologous Gemini Surfactants with Different Head Groups[J]. Central Euopean Journal of Chemistry.2007,5 (1):620-634.
    [49]R.zana, M.Benrraou, R.Rueff. Alkanediyl-a,ω-bis (dimethylalkyl ammonium Bromide) Summerfactant 1. Effect of the Spacer Chain Length on the Critical Micelle Concentration and Micelle Ionization Degree[J]. Langmuir,1991,7:1072-1075.
    [50]陈艳丽,宋永生.双长链双季铵盐化合物的发展概况[J].济南大学学报,1995,5(4):62-68.
    [51]Buton Xavier, Herve Paulette, Kubelt Janek. Unique Cellular Events Occurring During the Initial Interaction of Macrophages with Matrix-retained or Methylated Aggregated Low Density Lipoprotein (LDL):Prolonged Cell-surface Contact During which LDL-Cholesteryl Ester Hydrolysis Exceeds LDL Protein Degration[J] Journal of Biological Chemistry,1999,274 (45).32112-32121.
    [52]Rosen M J, Menger F M. Normal and Abnormal Surface Properties of Gemini Surfacts[A]. Proceedings of the 4th World Surfactants Congress[C]. Barcelona,1996,2:416-423.
    [53]Edyvean R.G. Biological Influences on Hydrogen Effects in Steel in Seawater[J]. Materials Performance,1998,37 (4):40-44.
    [54]曹亚峰,徐海涛.新型阳离子表面活性剂γ-双季铵盐的合成(Ⅱ)[J].表面活性剂工业,1995(3):39-41.
    [55]Huang Jinying, Zheng Jiashen, Fu Chaoyang, et al. The inhibition effects of a new heterocyclic bisquaternary ammonium salt in simulated oilfield water. Anti-corrosion methods and materials[J], 2004,51 (4):272-276.
    [56]Liu Hongfang, Xu Liming, Zheng Jiaxin. New bactericide for biocide resistant Sulfate Reducing Bacteria[J]. Materials Performance,2000,39 (4):52-55.
    [57]罗建斌,马晨.侧链带有脂肪族双季铵盐的赖氨酸的合成及抗菌性能分析[J].化学研究与应用,2008, (7):844-847.
    [58]赵秋伶,高志农.双季铵盐-硫酸酯盐两性Gemini表面活性剂的合成及其表面活性[J].武汉大学学报(理学版),2005,51(6):709-712.
    [59]徐孙见,徐群,邢凤兰,等.含酯基双子表面活性剂的合成[J].化学试剂,2007,29(10): 625-627.
    [60]肖稳发,岳前声,向兴金.油田水杀菌剂现状及发展趋势[J].辽宁化工,1999,28(26):316-321.
    [61]王培义,徐宝财,王军.表面活性剂—合成性能应用[M].化学工业出版社,2007,7:63.
    [62]迟波.季铵盐Gemini表面活性剂的合成及表面活性的研究[D].南京:南京理工大学,2004.
    [63]王香爱,阎国新.羟丙基季铵盐含量分析[J].氯碱工业,2003(4):36-38.
    [64]中华人名共和国铁路交通行业标准.TB/T1145-1975,溶液配制及标定方法.北京:中国标准出版社,1975.
    [65]Tae-Seong Kim, Toshikazu Hirao. Isao Ikdea. Preparation of bis-Quaternary Ammonium Salts from Epichlorohydrin[J]. JAOCS,1996,73 (1).67-71.
    [66]Tae-Seong Kim, Toshiyuki Kida, Yohji Nakatsuji, etal. Surface-Active Properties of Novel Cationic Surfactants with Two Alkyl Chains and Two Ammonio Groups[J]. JAOCS,1996,73 (7):67-71.
    [67]Van Der Mass, Hendrik J H. Method of Manufacturing Anhydrous 2-hydroxy-3-chloropropane-trimethyl Ammonium Chloride. US4450295.1984-02-25.
    [68]冯薇,傅德才.多功能季按盐型阳离子表面活性剂的合成及应用[J].印染助剂,1995,12(1):12-15.
    [69]许立铭,董泽华.甲硝羟乙唑的杀菌性能研究[J].油田化学,1994,11(2):193-142.
    [70]陶武荣,董泽华,刘靖,等.甲硝唑改性物的合成及其对SRB杀菌性能的研究[J].工业水处理,2000,20(8):20-22.
    [71]Carmen Drahl. Surprise From SN2 Snapshots Ion velocity measurements unveil additional unforeseen mechanism[J]. Chemical & Engineering News,2008,86 (2):9.
    [72]黄金营,郑家燊,魏红飚.含杂环双季铵盐的合成及其缓蚀性能的研究[J].腐蚀科学与防护技术,2004,16(5):272-276.
    [73]孔素东.Ga、Gh以及Gd双季铵盐化合物的合成与应用研究[D].南京:南京理工大学,2007.
    [74]中华人民共和国石油天然气行业标准.SY/T0532-1993,油田注入水细菌分析方法—绝迹稀释法[S].北京:中国标准出版社,1994.
    [75]中华人民共和国石油天然气行业标准.SY/T5890-1993,杀菌剂性能评价方法[S].北京:中国标准出版社,1994.
    [76]中华人民共和国石油天然气行业标准.SY/T5329-1994,碎屑岩油藏注水水质推荐指标及分析方法[S].北京:中国标准出版社,1995.
    [77]Alami E, Beinert G, Marie P, et al. Alkanediyl-a,ω-bis-(dimethyl alkyl ammonium bromide) Surfactants.3. Behavior at the Air-Water Interface[J]. Langmuir 1993,9:1465-1467.
    [78]赵世民.表面活性剂一原理合成测定及应用[M].北京:中国石化出版社,2005:45-46.
    [79]王世英,王丕贞.油田注水杀菌剂CT10-1[J].油田化学,1991,8(1):32-36.
    [80]吕人豪,肖昌松,刘琦.循环水中影响十二烷基二甲基苄基氯化铵杀菌作用的因素[J].徽生物学通报,1981,8(3):104-108.
    [81]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,248-253.
    [82]El Achouri M, Kertit S, Gouttaya H M, et a. Corrosion Inhibition of Iron in 1 M HCl by some Gemini surfactants in the Series of Alkanediyl-α,ω-Bis-(dimethyl tetradecyl ammonium bromide)[J]. Progress in Organic Coatings,2001,43 (4):267-273.
    [83]Achouri M E,Infante M R,Izquierdo F. Synthesis of some cationic Gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium[J]. Corrosion Science,2001,43: 19-35.
    [84]中华人民共和国石油天然气行业标准.SYfT5273-2000,油田采出水用缓蚀剂性能评定方法[S].北京:中国标准出版社,2001.
    [85]张煜,陈大钧,汤志强.水缓蚀剂YZHS-1的研制与应用[J].油田化学,2008,25(4):339-341.
    [86]朱(王步)瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996:80-83.
    [87]强亮生,王慎敏.精细化工实验[M].哈尔滨:哈尔滨工业大学出版社,1997,70-72.
    [88]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2004:198-200,35-438.
    [89]赵田红,胡星琪,王忠信.磺酸盐系列孪连表面活性剂的合成与驱油性能[J].油田化学,2008,25(3):268-280.
    [90]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987:311-318.
    [91]中华人民共和国石油天然气行业标准.GBf/T13173.6-1991《洗涤剂发泡力的测定(Ross-Miles法)》[S].北京:中国标准出版社,1991.
    [92]中华人民共和国石油天然气行业标准.SY/T5673-1993《油田用防垢剂性能评定方法》[S].北京:中国标准出版社,1993.
    [93]中华人民共和国标准.GB7476《水质钙的测定—EDTA滴定法》[S].北京:中国标准出版社,1987.
    [94]肖进新,赵振国.表面活性剂应用原理[M].北京:北京大学出版社,2005:496.
    [95]赵振国.界面化学基础[M].北京:化学工业出版社,1996:76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700