电化学阻抗免疫传感界面构建及其应用于多环芳烃的检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃是一类具有致癌、致畸、致突变性的持久性有机污染物。1-芘丁酸是PAHs的衍生物,对人体和动植物均有毒性作用。因此,对PAHs及衍生物的快速检测具有重要意义。电化学免疫传感器作为一种有效的微量和痕量分析手段,具有灵敏度高、分析速度快、选择性强、仪器简单等优点,近年来被人们所广泛关注。文献调研表明,利用电化学阻抗免疫传感器来监测环境中的多环芳烃及其衍生物的研究较少,对小分子物质PAHs的电化学免疫分析有待进一步探索。
     本文以1-芘丁酸为检测对象,采用不同的固定化技术将多环芳烃抗体有效固定在电极表面,构建灵敏和特异性的传感界面。以修饰的传感界面为敏感元件,根据循环伏安、交流阻抗等电化学方法表征免疫传感器的构建过程,通过电化学交流阻抗谱测定抗原抗体反应后传感器界面电子转移阻抗的变化来实现1-芘丁酸的定量分析,并据此探索了利用电化学阻抗免疫传感器进行多环芳烃快速检测的新方法。
     采用电沉积纳米金膜物理吸附的固定化技术,将多环芳烃抗体固定在玻碳电极表面,应用电化学阻抗谱及循环伏安法测定修饰电极在电解液中的电化学行为。实验结果显示,随着样品1-芘丁酸浓度的增加,结合到纳米金修饰电极表面的抗原-抗体复合物也增加,使得氧化还原对在电极表面电子转移阻力变大,导致电极表面电子转移阻抗随之增加,这表明阻抗谱可以用于1-芘丁酸的定性检测分析。实验初步建立了电化学阻抗谱和免疫传感器联用的多环芳烃检测方法。
     采用Nafion膜和金纳米粒子(nano-Au/Nafion)复合物作为电极材料,构建操作简单、高度灵敏、无标记型电化学阻抗免疫传感器,应用于1-芘丁酸的检测。在优化实验条件下,由于Nafion膜和金纳米粒子的协同作用和良好生物兼容性,电极表面的anti-PAHs抗体量极大提高。研究结果表明,nano-Au/Nafion复合电极对1-芘丁酸检测的灵敏度和稳定性比单一金纳米电极的性能更优异。nano-Au/Nafion免疫传感器的电子转移阻抗与1-芘丁酸的浓度对数成一定的线性关系,线性范围为0.1~150ng·mL-1,检测限为0.03 ng·ml-1。对电化学阻抗免疫传感器的选择性和准确性进行评价,均取得满意的结果。
     利用巯基物质在金表面的自组装特性,在金电极表面形成稳定、有序、尾基为羧基的巯基乙酸(MAA)单分子层自组装膜,再利用偶联剂1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基丁二酰亚胺(NHs)的活化作用形成活性酯中间体,anti-PAHs抗体与单分子层中的活性酯反应形成稳定的酰胺键,从而实现抗体在电极表面的有效固定。在Fe(CN)63-/Fe(CN)64-体系中以1-芘丁酸为检测对象,考察了传感器交流阻抗谱的电子转移阻抗在不同浓度1-芘丁酸中的响应变化,实现了对1-芘丁酸的定量分析。ΔRet与PBA的浓度对数在0.05-50 ng·mL-1范围内具有良好的线性关系,线性方程为ΔRet=3901.71gC+4135.3,相关系数R2=0.997,检测下限为0.05ng·mL-1。该免疫传感器在重现性和再生性方面也具有良好的表现。
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants (POPs) widely present in the environment, many which are carcinogenic, teratogenesis and mutagenicity. 1-Pyrenebutyric acid (PBA) is one of PAHs derivatives and harmful for human being and other flora and fauna. Therefore, it is of necessary to develop a sensitive, rapid and cost-effective method for PAHs detection. As an efficient trace analysis method, electrochemical immunosensor possesses the merits of high sensitivity, quick analysis, strong selectivity and simple structure, etc. However, few researches have been concentrated on utilizing electrochemical impedance immunosensor to monitor PAHs and its derivatives up to now. Further investigations should be carried out for the electrochemical immunoassay for small molecules of PAHs.
     1-Pyrenebutyric acid (PBA) was chosen as the examination object in this paper. Different immobilized technologies were adopted to fix the PAHs antibody on the electrode surface effectively, and then sensitive and specific sensing interfaces were constructed. The modified sensor interface is taken as the sensitive element. Then the construction process of the immunosensor is described by electrochemical means such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), etc. The quantitative analysis for PBA was realized according to the variation of the electron transfer impedance (Ret) after the immunoreaction between antigen and antibody on the sensing interface detected by EIS.
     Glassy carbon is selected as the basal electrode. The anti-PAHs antibody was steadily immobilized at the nano-Au/GC electrode due to large specific surface area and satisfactory biocompatibility of gold nanoparticles. The electrochemical behavior of the modified electrode in the electrolyte is monitored according to EIS and CV. It is shown that the quantity of immunocomplex combined to the nanometer gold modified electrode surface would rise with the increase in the concentration of the PAHs sample. Therefore, the electronic transfer resistance on the electrode surface increases by the redox, which resulted in the increase in the electron transfer impedance on the electrode surface. It is proved that the impedance spectroscopy could be adopted in the qualitative detection and analysis for PBA. In addition, the EIS immunosensor for the detection of PAHs is set up preliminary during the experiment.
     A simple, highly sensitive, and label-free electrochemical impedance spectroscopy (EIS) immunosensor was developed using Nafion and gold nanoparticles (nano-Au/Nafion) composites for the determination of PBA. Under the optimal conditions, the amount of immobilization of antibody was significantly improved on the nano-Au/Nafion electrode due to the synergistic effect and biocompatibility of Nafion film and gold nanoparticles composites. The results showed that the sensitivity and stability of nano-Au/Nafion composite electrode for PBA detection were much better than those of nano-Au modified glassy carbon electrode (nano-Au/GCE). The plot of increased electron transfer resistances (Rets) against the logarithm of PBA concentration is linear over the range from 0.1 to 150 ng-mL"1 with a detection limit of 0.03 ng·mL-1. The selectivity and accuracy of the proposed EIS immunosensor were evaluated with satisfactory results.
     An electrochemical impedance spectroscopy (EIS) immunosensor for the detection of PAHs was developed by immobilizing antibody through the Au-S covalent bond. A pretreated gold electrode is first immersed in mercaptoacetic acid solution to form a self-assembled monolayer (SAM). Then anti-PAHs antibodies are immobilized to the SAM by means of covalenting with a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide(NHS). In the presence of Fe(CN)63-/Fe(CN)64- as a redox probe, the electrotransfer resistances (Rets) were directly detected by EIS after the immunosensor specific binding with PBA of different concentrations. A linear relationship between the increased Ret and the logarithmic value of PBA concentrations was found in the range of 0.05-50 ng·mL-1 with the detection limit of 0.05 ng·mL-1. The regeneration and repeating characteristics were also studied to be good.
引文
[1]Larsen Randolph. K. Ⅲ, Baker Joel. E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere:A Comparison of Three Methods[J]. Environ. Sci. Technol,2003,37(9):1873-1881.
    [2]Menzie C. A., Potocki B. B., Santodonat O. J. Exposure to carinogenic PAHs in the environment[J]. Environ Sci Technol.1995,26(7):1278-1284.
    [3]屈小辉.量子化学方法研究典型有毒有机污染物的形成与讲解机理[D].山东大学,2009:16-17.
    [4]Li Kai, Chen Rongliang, Zhao Bitao, et al.. Monoclonal Antibody-Based ELISAs for Part-per-Billion Determination of Polycyclic Aromatic Hydrocarbons:Effects of Haptens and Formats on Sensitivity and Specificity[J]. Anal. Chem.1999,71(2):302-309.
    [5]杨若明.环境中有毒有害化学物质的污染与监测[M].北京:中央民族大学出版社,2001:21-22.
    [6]邹辉,罗岳平,陈一清等.加速溶剂萃取-气相色谱法测定土壤中16种多环芳烃[J].分析试验室,2008,27:37-39.
    [7]高庚申,谢蔚嵩,彭晓渝等.高效液相色谱法测定饮用水中苯并[a]芘[J],环境研究与监测,2009(4):53-55.
    [8]陈佳宁等.双波长荧光法同时测定水溶解态的茚、萘和菲[J].分析化学,2008,36(3):301-305.
    [9]谢云飞,王旭,阮伟东等.表面增强拉曼光谱技术在多环芳烃检测中的应用[J],光谱学与光谱分析,2011,31(9):2319-2323.
    [10]常薇,郁翠华,周娟.单液滴微萃取-气相色谱/质谱法检测水中多环芳烃[J],环境污染与防治,2009,31(5):54-56.
    [11]Nieva-Cano M. J., Rubio-Barroso S., Santos-Delgado M. J.. Determination of PAH in food samples by HPLC with fluorimetric detection following sonication extraction without sample clean-up [J]. Analyst.2001,126(8):1326-1331.
    [12]Zougagh M., Riosl A., Miguel Valcarcel, Direct automatic screening and individual determination of polycyclic aromatic hydrocarbons using supercritical fluid extraction coupled on-line with liquid chromatography and fluorimetric detection[J], Analytica Chimica Acta.2004,524(2):279-285.
    [13]李俊锁,钱传范.兽药残留免疫分析及其进展[J].中国兽医学报,1998,18(4):411-415.
    [14]Geng Ping, Zhang Xinai, Meng Weiwei, et al., Self-assembled monolayers-based immunosensor for detection of Escherichia coli using elecrochemical impendance spectroscopy[J]. Electrochemica Acta.2008,53(14):4663-4668.
    [15]Liao Yuhong, Yuan Ruo, Chai Yaqin, Study on an amperometric immunosensor based Nafion-cysteine composite membrane for detection of carcinoembryonic antigen[J]. Anal Biochem.2010,402 (1):47-53.
    [16]Lin Yingying, Liu Guodong, Wai C. M., et al., Bioelectrochemical immunoassay of polychlorinated biphenyl[J]. Analytica Chimica Acta.2008,612(1):23-28.
    [17]Fahnrich K.A., Pravda M., Guilbault G.G., Immunochemical detection of Polycyclic aromatic hydrocarbons(PAHs)[J]. Anal Lett.2002(8):1269-1300.
    [18]Henry J. B. The impact of biosensors on the clinical laboratory[J]. MLO:Med.Lab.Obs., 1990,22(7):32-35.
    [19]李娜.新型纳米材料用于电化学免疫传感界面的构建[D].西南大学,2008.
    [20]Lin Jiehua, He Chunyan, Zhang Lijuan, et al.. Sensitive amperometric immunosensor for a-fetoprotein based on carbonnanotube/gold nanoparticle doped chitosan film [J]. Anal Biochem.2009,384(1):130-135.
    [21]Liang, Ruping.; Qiu, Jianding.; Cai, Peixiang. A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique[J]. Anal. Chim. Acta.2005,534(2):223-229.
    [22]Zhuo Ying, Yu Rongjie, Yuan Ruo, et al. Enhancement of carcinoembryonic antibody immobilization on gold electrode modified by gold nanoparticles and SiO2/Thionine nanocomposite[J], J Electroanal Chem.2009,628(1-2):90-96.
    [23]Campanella L., Martini E.,Tomassetti M., Determination of HIgG and anti-HIgG using a single Potentiometric immunosensor and two differenf"competitive methods":Application to the analysis of globulin G in human serum [J]. Sensor Actuat B-chem..2008,130(1):52-530.
    [24]吕鸣样,张杰,申群英等.测定人绒毛膜促性腺素(HCG)的酶免疫传感器的研制[J],中国医学工程学报.1992,(11):35-38.
    [25]严八妮.电化学阻抗免疫传感器的研究[D].湖南大学,2006.
    [26]梁文斌.基于纳米材料为载体的免疫传感器的研究[D].西南大学,2008.
    [27]Diiksma M, Kamp B, Hoogvliet J C, et al. Development of an electrochemical immunosensor for direct detection of interferon-7 at the attomolar level[J]. Anal Chem.2001,73(3):901-907.
    [28]钟桐生.人体血清中补体3等电化学免疫传感器的研究及化学试剂的合成[D],湖南大学,2001.
    [29]Yang liu, Wei wanzhi, Gao xiahua, et al. A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor [J]. Talanta,2005,68(1):40-46.
    [30]王丰,府伟灵.电化学阻抗谱在生物传感器研究中的应用进展[J].生物技术通讯,2007,(3):549-552.
    [31]张灯,检测大肠杆菌的电化学阻抗谱免疫生物传感器[D],浙江大学,2005.
    [32]Lillie G., Payneb P., Vadgamac P., Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing[J]. Sensor Actuat B-chem.2001,78(1-3):249-256.
    [33]Chen Huan, Jiang Jianhui, Huang Yong, et al.. An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex[J]. Sensor Actuat B-chem.,2006,117(1):211-218.
    [34]Wang J., Pamidi P., Rogers K. R.. Sol-gel-derived thick-film amperometric immunosensors[J]. Anal. Chem.1998,70(6):1171-1175.
    [35]Ngeh-Ngwainbi J., Foley P. H., Kuan S.S., et al., Parathion antibodies on Piezoelectric-crystals[J]. Amer. Chemical. Soc.,1986,108(18):5444-5447.
    [36]杨生荣,任嗣利,张俊彦等.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-47.
    [37]Zhang X, Chen H, Zhang H., Layer-by-layer assembly:from conventional to unconventional methods[J]. Chem. Commun.,2007,14(14):1395-1400.
    [38]Tsekenis G., Garifallou G. Z., Davis F., et al. Detection of fluoroquinolone antibiotics in milk via a labeless immunoassay based upon an alternating current impedance protocol[J]. Anal Chem,2008,80(23):9233-9239.
    [39]Xiao Fei, Zhang Ningdan, Gu Hongjie, et al., A monoclonal antibody-based immunosensor for detection of Sudan I using electrochemical impedance spectroscopy[J]. Talanta.2011, 84(1):204-211.
    [40]Gehring A.G., Brewster J. D., Irwin P. L., et al.,1-Naphthyl phosphate as an enzymatic substrate for enzyme-linked immunomagnetic electrochemistry [J]. J Electroanal Chem.1999, 469(1):27-33.
    [41]蔡强,何苗,施汉吕.电化学免疫传感器在环境污染监测中的研究进展[J].传感技术学报,2004(3):526-530.
    [42]Parellada J., Narvaez A., et al. Amperometric immunosensors and enzyme Electrodes for environmental applications[J]. Anal Chim Acta,1998,362(1):47-57.
    [43]Liao Yuhong, Yuan Ruo, Chai Yaqin,et al. Study on an amperometric immunosensor based on Nafion-cysteine composite membrane for detection of carcinoembryonic antigen[J]. Anal. Biochem.2010,402(1):47-53.
    [44]Lin Yingying, Liu, Guodong, Wai C. M. et al. Bioelectrochemical immunoassay of polychlorinated biphenyl[J]. Anal Chim Acta.2008,612(1):23-28.
    [45]Huang, J. J.; Cheng, Y. X.; Liu, Y. J.; Li, K..; Xian, Y. Z.; Jin, L. T.; Gold Nanolabels for Enhanced Electrochemical Immunoanalysis of Escherichia coli[J]. Acta Chimica Sinica, 2009,67(20):2329-2334.
    [46]张学记等,电化学与生物传感器:原理、设计及其在生物医学中的应用,北京:2009:104.
    [47]Ramanavicius, A.; Finkelsteinas, A.; Cesiulis, H.; Ramanaviciene, A. Electrochemical impedance spectroscopy of polypyrrole based on electrochemical immunosensor[J]. Bioelectrochemistry 2010,79(1):11-16.
    [48]Li Qian, Wang, Ruozhong, Huang Zhigang, et al. A novel impedance immunosensor based on O-phenylenediamine modified gold electrode to analyze abscisic acid[J]. Chin. Chem. Lett. 2010,21(4):472-475.
    [49]Wei Mingyuan, Wen Shoudong, Yang Xiqiang, et al. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocabrons with controlled surface modification and catalytic volammetric detection[J]. Biosens Bioelectron,2009,24(9): 2909-2914.
    [50]Scharnweber T, Fisher M, Suchanek M, et al.. Monoclonal antibody to polycyclic aromatic hydrocarbons based on a new benzo[a]pyrene immunogen[J]. Fresenius J Anal Chem.2001, 371(5):578-585.
    [51]王重庆.分子免疫基础[M].北京:北京大学出版社,1997:
    [52]张岩.构建化学和生物传感界面用于环境有机污染物检测新方法研究[D].东华大学,2010.
    [53]Park Jong Won, Kurosawa Shigeru, Aizawa Hidenobu, et al. Comparison of stabilizing effect of stabilizers for immobilized antibodies on QCM immunosensors[J]. Sensor Actuat B-chem., 2003,91(1-3):158-162.
    [54]时克林,王晓蕾Nafion膜修饰电极的制备及其通透性研究[J].化学分析计量,2011,20(1):41-44.
    [55]Liu Haiying, Deng Jiaqi. An amperometric lactate sensor employing tetrathiafulvalene in Nafion film as electron shuttle[J]. Electrochim. Acta,1995,40(12):1845-1849.
    [56]Lin Jiehua, Zhang Lijuan, Zhang Hui, et al. Amperometric immunosensor for prostate specific antigen based on co-adsorption of labeled antibody and mediator in nano-Au modified chitosan membrane[J]. Chin. J. Chem.2008,26(10):480.
    [57]Chen Lijuan, Zeng Guangming, Zhang Yi, et al.. Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters[J]. Anal Biochem,2010,407(2):172-179.
    [58]Xing Sujie, Xu He, Chen Junshui, et al. Nafion stabilized silver nanoparticles modified electrode and its application to Cr(VI) detection[J]. J Electroanal Chem.2011,652(1-2): 60-65.
    [59]Kang Tianfang, Wang Feng, Lu Liping, et al. Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes[J]. Sensor Actuat B-chem, 2010,145(1):104-109.
    [60]Hrapovic S, Liu Yali, Luong H. T. J. Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite[J]. Anal. Chem.2007,79(2): 500-507.
    [61]Du Dan, Chen Wenjuan, Zhang Weiying, et al. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion[J]. Biosens Bioelectron,2010,25(6):1370-1375.
    [62]Chen Xiaojun, Wang Yuanyuan, Zhou Jinjun, et al. Electrochemical Impedance Immunosensor Based on Three-Dimensionally Ordered Macroporous Gold Film[J]. Anal. Chem.2008,80(6):2133-2140.
    [63]Zhang Yan, Zhuang Huisheng. Amperometric Immunosensor Based on Layer-by-layer Assembly of Thiourea and Nano-gold Particles on Gold Electrode for Determination of Naphthalene[J]. Chin. J. Anal. Chem.2010,38(2):153-157.
    [64]Keskin, E.; Yardim, Y.; Senturk, Z. Voltammetry of Benzo[a]pyrene in Aqueous and Nonaqueous Media:Adsorptive Stripping Voltammetric Determination at Pencil Graphite Electrode[J]. Electroanalysis.2010,22(11),1191-1199.
    [65]许园园,吴雅欣,潘家荣.自组装膜电化学免疫传感器测定甲基对硫磷[J].核农学报,2009,23(3):497-500.
    [66]Ogawa H, Chihara T, Taya K. SELECTIVE MONOMETHYL ESTERIFICATION OF DICARBOXYLIC-ACIDS BY USE OF MONOCARBOXYLATE CHEMISORPTION ON ALUMINA[J]. J. Am. Chem. Soc.,1985,107(5):1365-1369.
    [67]Wan L J, Terashima M, Noda H et al. Molecular orientation and ordered structure of benzenethiol adsorbed on gold(111)[J]. J. Phys. Chem. B,2000,104(15):3563-3569.
    [68]张俊苓,杨芳,郑文杰.自组装单分子膜及其表征方法[J].化学进展,2005(2):203-208.
    [69]Ulman A. Fonnation and structure of self-assembled monolayers[J]. Chemical Review, 1996(96):1533-1554.
    [70]Jie Guifen, Liu Bo, Pan Hongcheng, et al. CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification [J]. Anal. Chem.2007,79(15): 5574-5581.
    [71]Tengvall P, Jansson E, Askendal A. et al. Preparation of multilayer plasma protein films on silicon by EDC/NHS coupling chemistry[J]. Colloids Surf. B 2003,28(4):261-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700