木质纤维类生物质定向热解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源是唯一可再生的碳资源,通过热化学、生物等方法可转化成常规的液态和气态燃料以及其它化工原料或者产品。作为唯一能够直接转化为液体燃料的可再生能源,生物质以其产量巨大、可储存和碳循环等优点已引起全球的广泛关注。快速热解技术是以制备液体产品为目的一种新型生物质热化学转化技术。困扰基于生物质热解技术生产化学品工业腾飞发展的主要问题是热解产物极其复杂和产物的不稳定性。论文总体思路是采用居热解-气质联用技术,创新研究生物质定向热解行为,揭示纤维素类生物质热解产物的定向调控机理;通过热重与傅立叶红外联用技术(TG-FTIR),研究生物质热解动力学,并建立热解反应动力学模型;通过高温介质热解技术,开发新型热解产物高热值气体、高品质液体油以及高性能碳材料综合利用技术,为生物质高值化综合利用提供理论依据。论文的主要研究内容和结果如下:
     1.生物质基本组分居热解行为研究
     纤维类生物质资源主要由纤维素、半纤维素、木质素组成,其热解行为可以归结为三种主要组分的热解。论文以微晶纤维素、木聚糖和碱木素作为生物质基本组分的模型化合物,采用居热解-气质联用技术(CP-GC-MS),研究了生物质三大基本组分以及纤维素热解中间体左旋葡聚糖的居热解行为,剖析了生物质基本组分热解行为的差异性和主要热解产物组成,研究结果表明:生物质基本组分居热解行为具有明显的差异性。左旋葡聚糖始终是纤维素热解的主体产物,纤维素热解生成糠醛、左旋葡烯酮、吡喃型葡萄糖苷、5-羟甲基-糠醛和呋喃半乳糖酐等化合物,经过了左旋葡聚糖中间体步骤;木聚糖的居热解区域以300℃为分界线,小于300℃,仅生成以糠醛和糖类单体为主的化合物,有利于定向热解;大于300℃时,木聚糖热解极其活跃,小分子的醛酮类物质开始生成,糖类和糠醛等化合物含量降低,不利于定向热解反应;木质素居热解产物中,主要生成了以二氧化碳和愈创木酚类化合物为主体的化合物。酚羟基和甲氧基的电子效应,使与愈创木基相连的键更容易断裂,愈创木酚在居热解过程中始终是热解的主体产物,同时,木质素单体间基本连接键形中C-O-C和C-C相比较更容易断裂生成二氧化碳。
     2.纤维素定向催化居热解行为研究
     催化热解技术是以获取高值化产品和目标产品高得率为目的的定向调控技术。论文利用CP-GC-MS联用技术研究了纤维素在Fe_2(SO_4)_3,CuSO_4,ZnCl_2,H_3PO_4等催化剂作用下的定向居热解行为,重点考察了糠醛、左旋葡聚糖和左旋葡烯酮等热解产物的变化,提出了左旋葡烯酮与左旋葡聚糖之间的定向调控途径与机制,结果表明:Fe_2(SO_4)_3,CuSO_4,ZnCl_2,H_3PO_4等催化剂具有选择性调控糠醛、左旋葡聚糖和左旋葡烯酮等纤维素热解产物形成途径的作用,催化剂主要是增强了纤维素脱水和脱CO基作用,但由于脱除水和CO2的能力不同,导致最终热解产物中三种主体产物左旋葡聚糖、左旋葡烯酮、糠醛的相对含量不同。左旋葡烯酮主要通过左旋葡聚糖脱除两分子水生成,左旋葡烯酮通过进一步脱CO基生成糠醛。H_3PO_4、CuSO_4催化热解可以作为定向调控降低左旋葡聚糖、提高左旋葡烯酮以及糠醛含量的有效手段;ZnCl_2催化热解可以作为定向调控制备糠醛化学品的有效手段;Fe_2(SO_4)_3吸附法预处理样品可以作为定向调控降低左旋葡聚糖、提高左旋葡烯酮以及糠醛含量的有效手段,离子络合法预处理样品可以作为定向调控获得高的左旋葡聚糖、低的左旋葡烯酮的方法。四种催化剂中,H_3PO_4定向调控制备左旋葡烯酮效果最好;ZnCl_2定向调控制备糠醛能力最好;Fe_2(SO_4)_3离子络合法预处理样品可使糖类主体产物停留在左旋葡聚糖上。
     3.木质纤维类生物质定向催化热解行为研究
     木质纤维类资源是由具有复杂空间结构的高分子化合物纤维素、半纤维素和木质素相互结合而形成的超分子复合物。论文以廉价的H_3PO_4和ZnCl_2作为催化剂,以具有代表性的竹子、沙柳和柠条三种木质纤维类生物质为原料,利用CP-GC-MS联用技术研究了木质纤维类生物质定向催化热解行为,重点分析了糠醛、左旋葡聚糖、左旋葡烯酮、酚类化合物等热解产物的调控机制,结果表明:ZnCl_2和H_3PO_4催化剂能选择性调控木质纤维类生物质热解产物的种类和含量,是定向调控降低酚类化合物含量、乙酸含量,提高糖类化合物、呋喃类化合物的有效手段。H_3PO_4和ZnCl_2预处理生物质均增强了左旋葡聚糖中间体脱水和脱CO基作用而生成了较多的糠醛和左旋葡烯酮,促进了木质素形成碳,而非酚类化合物,同时抑制乙酸化合物的生成;H_3PO_4催化剂有助于选择性催化生成左旋葡烯酮;ZnCl_2催化剂有助于选择性催化生成左旋葡聚糖和糠醛;对于酚类和乙酸两种化合物的抑制能力ZnCl_2>H_3PO_4。
     4.木质纤维类生物质高温介质热解行为研究
     高温介质热解是一种新型热解技术,该技术的瓶颈是如何廉价地获取高温介质。本论文采用蜂窝陶瓷热交换技术廉价地获得高温介质,在固定床热解反应器中研究了高温介质(蒸汽、氮气)热解行为及其对热解产物的影响,结果表明:高温蒸汽热解技术有助于制备出高性能固体炭产品、高热值气体以及高品质生物油产品。随着热解介质温度的提高,生物质热失重速率提高,热解时间明显缩短。在相同的热解温度下,蒸汽介质中生物质热失重率大于氮气介质。高温蒸汽热解可以获得挥发份低、比表面积大的固体炭产品。高温蒸汽热解对热解气体H_2、CO、CH_4、CO_2和C_2Hy等影响显著,各种气体组分含量均明显高于氮气热解。随着热解温度的提高,高温蒸汽热解过程中主要气体组分含量均有所提高,且随着温度的升高,各组分出现的时间前移,尤其是H_2、CH_4和C_2Hy等高热值气体组分含量大幅度提高;同时由于蒸汽热解过程中没有大量氮气稀释现象的存在,且在热解气体冷凝后,蒸汽析出,有助于制备高热值气体。高温蒸汽热解制备的生物油具有H/C高、O/C低的特点,经验计算的生物油热值高达33.54MJ/kg,具有进一步开发作为燃料油和化学品利用的前景。
     5.基于TG-FTIR的生物质热解机理研究
     生物质热解机理研究包括热解产物生成途径以及热解动力学两个方面。论文采用TG-FTIR联用技术,研究了生物质热解特性参数、动力学参数、反应途径、热解产物红外特征官能团析出过程,并对生物质热解反应动力学进行了数学模拟。结果表明,催化剂有效改变了生物质热解特性参数、动力学参数、反应途径、热解产物的析出转化过程。纤维素、木聚糖和木质素三种基本组分的动力学分析表明纤维素和木聚糖属于平行竞争反应途径,木质素属于先形成中间体随后发生竞争反应模型;木质素在热解过程中出现了比较明显的CH_4吸收峰(3016cm-1)。在H_3PO_4和ZnCl_2两种催化剂作用下,纤维素热失重区间整体向低温区移动,有效降低了纤维素的热解活化能,CO的特征吸收峰变宽,并出现二次吸收峰。磷酸催化剂促使纤维素热解倾向于形成中间体的竞争反应途径。H_3PO_4、ZnCl_2催化剂使竹材、沙柳和柠条热解失重温区向低温区迁移,动力学分析表明,催化剂使用降低了竹材热解反应活化能,提高了柠条和沙柳热解反应活化能。竹材热解经历一步反应途径,磷酸催化剂未改变反应途径,氯化锌催化剂使竹材热解倾向于平行连串反应模型;沙柳热解经历一步反应途径,磷酸处理未改变反应途径,氯化锌处理沙柳热解倾向于平行竞争反应模型;柠条热解属于竞争反应模型,磷酸处理后的柠条呈现出一步反应途径,氯化锌处理柠条仍然倾向于平行竞争反应模型。催化剂处理木质纤维类生物质后,热解产物中CO、CH_4的红外吸收峰出现明显拖后现象,主要是由富氧官能团的碳表面二次热解,以及苯环支链高温热解形成。氯化锌催化剂更加有助于抑制气相产物的生成。
Biomass resources, the only renewable carbon resources, can be turned into conventional liquid, gaseous fuels and other chemical raw material or product by thermo-chemical, biological and other methods. As the only renewable energy directly translated into liquid fuels, biomass with the advantages of huge output, storage and the carbon cycle has attracted widespread interests all over the world. Fast pyrolysis technology is a new type of technologies of biomass thermochemical conversion for the purpose of. preparing the liquid products. The main problems of impeding the development of preparing chemicals from biomass are the pyrolytic products extremely complex and unstable. The general idea of this paper is to investigate the behavior of directed pryolysis from biomass by Curie-point Pyrolysis -gas chromatography-mass spectroscopy(CP-GC-MS),reveal the mechanism of directionally controlling the products pyrolyzed from lignocellulose biomass,study the dynamics of biomass pyrolysis by TG-FTIR and establish the kinetics models of biomass pyrolysis, exploit the technology of comprehensive utilization of pyrolytic products including high heating value gas, high quality liquid oil and high performance carbon material by the method of the super-high temperature medium pyrolysis in order to provide the theoretical basis of high value, comprehensive utilization of biomass. The main research content and results of the paper were as follows:
     1. The curie-point pyrolysis behavior of biomass major components
     The lignocellulose biomass resources are the greatest amount of biomass resources on the earth, mainly composed of cellulose, hemicellulose, lignin. And its pyrolysis behavior can be attributed to the summation of its major components pyrolysis. In this paper, the curie-pyrolysis behaviors of the three main components of biomass and the levoglucosan as the intermediate products pyrolyzed from cellulose were investigated by the apparatus of CP-GC-MS from the microcrystalline cellulose,xylan and Alkali-lignin,which were considered as the model compounds of cellulose, hemicellulose and lignin. The differences of the pyrolysis behavoir of biomass basic components and the composition of major pyrolysis products were analyzed. The research results indicated that the curie-point pyrolysis behavior of biomass major components has obvious differences. The levoglucosan is the main component of pyrolysis products from cellulose all the time. The intermediate step of levoglucosan was experienced in the process of preparing the furfural, levoglucosenone and HMF from cellulose pyrolysis. The process of xylan curie-point pyrolysis could be broke into two region: At the area of less than 300℃, xylan by random glycosidic cleavage was pyrolyzed into furan derivatives and saccharidic compounds,furfural content reaches to 54.38 % in the pyrolysate. At the area of more than 300℃, the kind and content of chemicals of small molecular aldehyde,ketone were improved greatly with the enhancement of pyrolysis temperature. The carbon dioxide and guaiacol unit compounds were produced from the lignin pyrolysis. The cause of that guaiacol always was the main products in the process of lignin curie-point pyrolysis was more easy rupture of the bond between guaiacol and methoxy resulted from the electronic effect of methoxy and phenolic hydroxyl group. The carbon dioxide was prepared from the rupture of C-O-C.
     2. The directionally catalytic curie-point pyrolysis behavior of cellulose
     The technology of catalytic pyrolysis is a directionally controlling techniques in order to get high value products and the high yield of the target product. In this paper, the directed pryolysis behaviors of cellulose catalyzed by Fe_2(SO_4)_3,CuSO_4,ZnCl_2,H_3PO_4 were investigated by the apparatus of CP-GC-MS. The variation of pyrolysate such as furfural, levoglucosenone and levoglucosan was reviewed. the pathway and mechanism of selectively controlling levoglucosenone and levoglucosan were brought forward. The research results indicated that the catalysts of Fe_2(SO_4)_3,CuSO_4,ZnCl_2,H_3PO_4 can play the role of selectively controlling the forming pathway of cellulose pyrolysate such as furfural, levoglucosenone and levoglucosan. The catalysts can enhance the dehydration and decarbonylation of cellulose. The distinctness of the dehydration and decarbonylation between four catalysts resulted in the dissimilarity of furfural, levoglucosenone and levoglucosan contents. The levoglucosenone was made from the levoglucosan by dehydrating two molecules H_2O. And the furfural was prepared from the levoglucosenone by decaronylation. It is a very effective method of selective pyrolysis cellulose catalyzed by H_3PO_4 and CuSO_4 to reduce the content of the levoglucosan and enhance the content of levoglucosenone and furfural. The directed pyrolysis of cellulose catalyzed by ZnCl_2 is a very good way to selectively prepare the furfural.They were very good means of selectively reducing the content of levoglucosan and enhancing the content of levoglucosenone and furfural by treating the cellulose by the adsorption of the Fe_2(SO_4)_3 solution,directionally preparing high levoglucosan and low levoglucosenone by treating the cellulose by the complexation of the Fe_2(SO_4)_3 solution
     3. The directed pyrolysis behavior of lignocellulose biomass
     The lignocellulosic biomass composed of three major components of lignin, cellulose and hemicelluloses is supramolecular polymer with complex spatial structure. In this paper, the directed pryolysis behaviors of lignocellulose biomass including bamboo,willow and caragana catalyzed by ZnCl_2,H_3PO_4 with low cost were investigated by the apparatus of CP-GC-MS. The regulation mechanism of biomass pyrolysis products such as furfural, levoglucosenone,levoglucosan and phenolic compounds was ananlyzed. The research results indicated that the species and content of lignocellulose biomass pyrolysate could be regulated by the catalysts of ZnCl_2 and H_3PO_4 selectively, which was the effective method of reducing the content of acetic acid and phenolic compounds and enhancing the content of the sugar compounds and furan compounds directionally. The enhancement of the dehydration and decarbonylation of the levoglucosan intermediate by treating the lignocellulose biomass with ZnCl_2 and H_3PO_4 resulted in preparing more furfural and levoglucosenone, promoting the lignin to form carbon rather than phenolic compounds. and restraining the production of acetic acid. The catalyst of H_3PO_4 made for the selectively forming of levoglucosenone. The catalyst of ZnCl_2 helped to selectively prepare the levoglucosan and furfural. The ability for the inhibition of the acetic acid and phenolic compounds was ZnCl_2>H_3PO_4.
     4. The pyrolyis behavior of lignocellulose biomass via the super-high temperature medium
     The super-high temperature medium pyrolysis was a new type technology of pyrolysis,existed the bottle-neck of obtaining the super-high temperature medium with low cost. In this paper, the super-high temperature medium with low cost was obtained by the technology of the honeycomb ceramic heat exchanger. The pyrolysis behavior of super-high temperature medium(steam and nitrogen) and the influence of it on the pyrolysis products were investigated in the fixed bed pyrolysis reactor. The research results showed that the technology of super-high temperature steam pyrolysis helped to prepare high value solid carbon materials,high heating value gas and high quality bio-oil. The solid carbon product with low volatile content and big specific surface area can be got by high-temperature steam pyrolysis. The influence of high temperature steam pyrolysis on pyrolytic gas such as H_2, CO, CH_4, CO2 and C2Hy was remarkable. The contents of various gas components by high temperature steam pyrolysis are significantly higher than nitrogen. With the improvement of pyrolysis temp. the contents of the major gases in the process of high temp. steam pyrolysis were increased and the times of various gas components appear were moved up. Specially, the contents of high heating value gas such as H_2、CH_4 and C2Hy were improved significantly. As the same time, it was in favor of preparing high heating value gas because of not existing the diluted phenomena of a great deal of nitrogen during the steam pyrolysis and condensing steam after cooling the pyrolytic gas.The characterization depending on the analysis of the bio oil obtained from high temperature steam pyrolysis has shown that a low O/C and high H/C ratio product can be obtained. Heating value of the liquid fraction based on GC-MS data was calculated and found equal to 33.54 MJ kg-1. These facts imply that this product can be used as a potential source of renewable fuel and chemical feedstock.
     5. The pyrolysis mechanism of biomass by TG-FTIR
     The study of the biomass pyrolysis mechanism includes two aspects of the forming pathway of pyrolytic products and pyrolysis kinetics. In this paper, the pyrolysis characteristic parameters, kinetics parameters, reaction pathway and the evolutions of pyrolytic products were investigated by TG-FTIR and the kinetics model of biomass pyrolysis reaction was simulated. The research results showed that the pyrolysis characteristic parameters, kinetics parameters, reaction pathway and the evolutions of pyrolytic products could be varied effectively by catalysts.The kinetics analysis of three major components such as cellulose,xylan and lignin showed that the reaction pathways of cellulose and xylan pyrolysis are attribute to the parallel and competitive reaction, and that of lignin is attribute to first forming medium and occuring the competitive reaction subsequently. The FTIR peak(3016cm-1) of CH_4 appeared in the process of lignin pyrolysis. The mass loss scope of cellulose pyrolysis under H_3PO_4 and ZnCl_2 catalysts moved to low temperature region, the activation energy of cellulose was reduced in effect. The characteristic absorbance peak of CO was broadened and the second absorbance peak of CO appeared. The catalyst of H_3PO_4 made the cellulose pyrolysis for the competitive reaction pathway of forming medium.
     The mass loss scopes of bamboo,willow and caragana pyrolyzed under H_3PO_4 and ZnCl_2 catalysts moved to low temp. region. The kinetics analysis showed the activation energy of bamboo pyrolysis reaction was reduced,but that of willow and caragana pyrolyisis reaction were enhanced under the catalysts. The pyrolysis of bamboo experienced one step pathway.The reaction pathway of bamboo pyrolysis under H_3PO_4 was not changed. The catalyst of ZnCl_2 made the bamboo pyrolysis for the competitive reaction pathway of three steps.The pyrolysis of willow experienced one step pathway too.The reaction pathway of willow pyrolysis under H_3PO_4 was not changed. The catalyst of ZnCl_2 made the willow pyrolysis for the competitive reaction pathway of two steps.The pyrolysis of caragana experienced the competitive reaction pathway of two steps. The catalyst of H_3PO_4 made the caragana pyrolysis for the one step reaction pathway. The reaction pathway of caragana pyrolysis under ZnCl_2 was not changed. The FTIR absorbance peak of CO、CH_4 in the pryolysate from the lignocellulose biomass pyrolyzed by catalysts showed a significant drag. It was resulted from the secondary cracking of rich oxygen functional groups in carbon surface and the branched ring cracking of benzene at the high temperature. The catalyst of ZnCl_2 helped to restrain the forming of gaseous products.
引文
[1]石元春等.中国生物质资源与产业化战略研究[R].中国工程院咨询报告,北京,2006.
    [2] Frank Rosillo-Calle, Peter de Groot, Sarah L. Hemstock.The Biomass Assessment Handbook[M], Frank Rosillo-Calle,2007.
    [3]宋卫东,方彤,等.2009年《世界能源展望》要点综述,能源开发与利用,2010,22(1):18-22.
    [4] Wim Soetaert,Erick J. Vandamme.Biofuels[M]. A John Wiley and Sons, Ltd, 2009.
    [5]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,6:9-10.
    [6] Peter McKendry.Energy production from biomass (part2):conversion technologies[J].Bioresource Technology,2002,83(1):47-54.
    [7] Doherty,W.O.S.,Mousavioun,P.,Fellows,C.M. Value-adding to cellulosic ethanol: Lignin polymers[J]. Industrial Crops and Products,2011,33(2):259-276.
    [8] Robert P. Anex,Andy Aden, Feroz Kabir Kazi, Joshua Fortman, Ryan M. Swanson.Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification,and biochemical pathways[J].Fuel,2010,1(S1):S29-S35.
    [9] R.L. Bain.World Biofuels Assessment,Worldwide Biomass Potential: Technology Characterizations[R]. National Renewable Energy Laboratory,2007.
    [10] Ayhan Demirbas.Competitive liquid biofuels from biomass[J].Applied Energy,2011,88(1):17-28.
    [11] Ayhan Demirbas.Progress and recent trends in biofuels[J].Progress in Energy and Combustion Science,2007,33(1):1-18.
    [12] W.E. Mabee,J.N. Saddler.Bioethanol from lignocellulosics: Status and perspectives in Canada[J].Bioresource Technology,2010,101(13):4806-4813.
    [13] Mustafa Balat. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review[J].Energy Conversion and Management,2011,52(2):858-875.
    [14] Thomas P. Wampler. Applied Pyrolysis Handbook[M].New York,Taylor & Francis Group, 2007.
    [15] T. Damartzis,A. Zabaniotou.Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review[J].Renewable and Sustainable Energy Reviews,2011,15(1):366-378.
    [16] Mi-Kyung Bahng, Calvin Mukarakate, David J. Robichaud,Mark R. Nimlos.Current technologies for analysis of biomass thermochemical processing: A review[J]. Analytica Chimica Acta,2009,651(2):117-138.
    [17] Poonam Singh Nigam,Anoop Singh.Production of liquid biofuels from renewable resources[J].Progress in Energy and Combustion Science,2011,37(1):52-68.
    [18] Ralph E.H. Sims, Warren Mabee, Jack N. Saddler,Michael Taylor.An overview of second generation biofuel technologies[J].Bioresource Technology,2010,101(6):1570-1580.
    [19] M. Fatih Demirbas.Biorefineries for biofuel upgrading: A critical review[J].Applied Energy,2009,86(1):S151-S161.
    [20] D. Radlein, J. Piskorz,D. S. Scott.Fast pyrolysis of natural polysaccharides as a potential industrial process.Journal of Analytical and Applied Pyrolysis,1991,19:41-63.
    [21] Linghong Zhang, Chunbao (Charles) Xu,PascaleChampagne.Overview of recent advances in thermo-chemical conversion of biomass[J].Energy Conversion and Management,2010,51(5):969-982.
    [22] T. Werpy,G. Petersen,etc.Top value added chemicals from biomass:volume1 results of screenning for potential candidates from sugars and synthesis gas[R].NREL,2004.
    [23] B. Rejai,Catalyst and feedstock Effects in the Thermalchemical Conversion of Biomass to Liquid transportation Fuels[M].National Renewable Energy Laboratory,1992.
    [24] H.B. Goyal, Diptendu Sea,R.C. Saxena.Bio-fuels from thermochemical conversion of renewable resources:A review[J].Renewable and Sustainable Energy Reviews,2008,12(2):504-517.
    [25] Anthnony V. Bridgwater.Biomass fast pyrolysis[J].Thermal science,2004,8(2):21-49.
    [26] Birgit Kamm,Patrick R. Gruber,Michael Kamm.Biorefineries-industrial processes and products[M]. Germany,WILEY-VCH,2006.
    [27] J. L. Jones,K. T. Semrau.Wood hydrolysis for ethanol production-previous experience and the economics of selected processes[J].Biomass,1984,5(2):109-135.
    [28] Marcus Foston,Art J. Ragauskas.Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass[J].Biomass and Bioenergy,2010,34(12):1885-1895.
    [29] H. M. Asfour, A. M. Tayeb,N. A. Mostafa.Alcohol production from acid hydrolyzate of Akalona[J]. Energy Conversion and Management,1991,32(5):499-504.
    [30] Long Huang, Yulei Zhu, Hongyan Zheng,etc.Vapor-phase hydrogenolysis of biomass-derived lactate to1,2一propanediol over supposed metal catalysts[J]Applied Catalysis A:General,2008,349(1—2):204—211
    [31]Man Jiang,Mengmeng Zhao,Zuowan Zhou,etc Isolation of cellulose with ionic liquid from steamexploded rice straw[J]Industrial Crops and Products,Article in Press
    [32]Yan Zhao,Wen—Jing Lu,Hong—Tao Wang Supercritical hydrolysis of cellulose for 011gosacchandeproductionin combinedtechnology[J]ChemicalEngineering Journal,2009,150(2—3):411—417
    [33]Daizo Yamaguchi,Michikazu Hara Starch saccharification by carbon—based solid acid catalyst[J]SolidState Sciences,2010,12(6):101 8-1023
    [34]Furong Tao,Huanling Song,Lingjun Chou Hydrolysis ofCellulose by Using Catalytic Amounts ofFeCl2in Ionic Liquids[J]ChemSusChem,201 O,(1 1):1 298 1 303
    [35]王玉高等纤维素水解的研究进展,化工时刊,2009,23(5):70—73
    [36]N Abdi,F Hamdache,D Belhocine,etc Enzymatic saccharification of solid residue of olive mill in abatch reactor[J]BiochemicalEngineering Journal,2000,6(3):177—1 83
    [37]Lili Lin,Rung Yan,Yongqiang Liu,Wenju Jiang In—depth investigation of enzymatic hydrolysis ofbiomass wastes based on three major components:Cellulose,hemicellulose and lignin[J]BioresourceTechnology,2010,101(21):8217—8223
    [38]陈洪章纤维素生物技术[M]北京,化学工业出版社,2005
    [39]Carlos Martin,Mette H Thomsen,Henrik Hauggaard—Nielsen,Anne BelindaThomsen Wet oxidationpretreatment,enzymatic hydrolysis and simultaneous saccharification and fermentation ofclover ryegrass mixtures[J]Bioresource Technology,2008,99(1 8):8777—8782
    [40]Jingzhi Zhang,Xingxing Ma,Jianliang Yu,etc The effects of four different pretreatments on enzymatichydrolysis of sweet sorghum bagasse[J]BioresourceTechnology,2011,102(6):4585—4589
    [41]T.B Reed Biomass gaslncatlon:prmclples and technology[M]Park Ridge,N J Noyes Data Corp,1981
    [42]Oscar Tirado—Acevedo,Mari S Chinn,Amy M Grunden Chapter 2-Production of Biofuels fromSynthesisGasUsingMicrobialCatalysts[J]AdvancesinAppliedMicrobiology,2010,70:57—92
    [43]Anne M Henstra,Jan Sipma,Arjen Rinzema,Alfons JM Stams Microbiology of synthesis gasfermentation for biofuel production[J]Current Opinion in Biotechnology,2007,18(3):200—206
    [44]J M Bouvier,M Gelus,S Maugendre Wood liquefaction—An overview[J]AppliedEnergy,1988,30(2):85-98.
    [45] Matja? Kunaver, Edita Jasiukaityt?,Vesna Ti?ler.Liquefaction of lignocellulosic biomass and its potential applications[J].Journal of Biotechnology,2007,131(2):S23.
    [46] Yongjie Yan, Jie Xu, Tingchen Li,Zhengwei Ren.Liquefaction of sawdust for liquid fuel[J].Fuel Processing Technology,1999,60(2):135-143.
    [47] Yejian Qian, Chengji Zuo,Jian Tan,Jianhui He.Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass[J]. Energy,2007,32(3):196-202.
    [48] F. Goudriaan,D.G.R. Peferoen.Liquid fuels from biomass via a hydrothermal process[J].Chemical Engineering Science,1990,45(8):2729-2734.
    [49] Mingcun Wang, Chunbao (Charles) Xu,Mathew Leitch.Liquefaction of cornstalk in hot-compressed phenol–water medium to phenolic feedstock for the synthesis of phenol–formaldehyde resin[J].Bioresource Technology,2009,100(7):2305-2307.
    [50] Zhengang Liu,Fu-Shen Zhang.Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J].Energy Conversion and Management,2008,49(12):3498-3504.
    [51] Shafizadeh, F.Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrol.,1982,3:283-305.
    [52] Tang WK.Effect of inorganic salts on pyrolysis of wood,alpha cellulose and lignin[R].US forest service research paper,FPL71,1967.
    [53] Scott DS,Czernik S.liquid products from the fast pyrolysis of wood and cellulose[R].in research in thermochemical biomass conversion,phoenix,Arizona,USA, Bridgwater AV and Kuester JL,1988.
    [54] Masahide Sasaki, Kenji Takahashi, Yui Haneda,etc,Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam[J]. Carbohydrate Research,2008,343(5):848-854.
    [55] Torren R. Carlson, Jungho Jae, Yu-Chuan Lin, Geoffrey A. Tompsett,George W. Huber.Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J].2010,Journal of Catalysis,270(1):110-124.
    [56] D.K. Shen,S. Gu.The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology,2009,100(24):6496-6504.
    [57] Soltes EJ,Elder TJ.Pyrolysis,in organic chemicals from biomass,Goldstein IS,CRC Press,Boca Raton,Florida,1981:63-100.
    [58] D.K. Shen, S. Gu, and A.V. Bridgwater.Study on the pyrolytic behaviour of xylan-based hemicelluloseusing TG–FTIR and Py-GC-FTIR[J].Journal of Analytical and Applied Pyrolysis,2010,87(2):199-206.
    [59] Carlos Amen-Chen, Hooshang Pakdel,Christian Roy. Production of monomeric phenols by thermochemical conversion of biomass: a review[J].Bioresource Technology,2001,79(3):277-299.
    [60] Madhav Prasad Pandey,Chang Soo Kim.Lignin Depolymerization and Conversion:A Review of Thermochemical Methods[J].Chem. Eng. Technol,2011,34(1):29-41.
    [61] E. Dorrestijin, L. J. J. Laarhoven, I. W. C. E. Arends,P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal[J].J.Anal. Appl. Pyrolysis,2000,54:153-192.
    [62] Mustafa Balat, Mehmet Balat, Elif K?rtay.Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems[J]. Energy Conversion and Management,2009,50(12):3147-3157.
    [63] Toshihiro Watanabe, Haruo Kawamoto, Shiro Saka.Radical chain reactions in pyrolytic cleavage of the ether linkages of lignin model dimers and a trimer[J].Holzforschung,2009, 63(4) :424-430.
    [64] Thomas Elder. A computational study of pyrolysis reactions of lignin model compounds[J]. Holzforschung,2010,64(4):435-440.
    [65] Mario Fasching, Philipp Schr?der, R. Petra Wollboldt, Hedda K. Weber, Herbert Sixta. A new and facile method for isolation of lignin from wood based on complete wood dissolution[J].Holzforschung,2008,62(1):15-23.
    [66] Haruo Kawamoto, Masakazu Ryoritani,Shiro Saka.Different pyrolytic cleavage mechanisms ofβ-ether bond depending on the side-chain structure of lignin dimmers[J].Journal of Analytical and Applied Pyrolysis,2008,81(1):88-94.
    [67] Nakamura T, Kawamoto H, Saka S. Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature[J].J Wood Chem Technol,2007,27:121-133.
    [68] Kawamoto H, Horigoshi S, Saka S.Pyrolysis reactions of various lignin model dimers. J Wood Sci,2007,53:168-174.
    [69] Q Liu, S Wang, Y Zheng,etc. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177.
    [70] Mamdouh M. Nassar, G. D. M. MacKay.Mechanism of Thermal Decomposition of Lignin[J].Wood and Fiber Science,1984,16(3):441-453.
    [71] A. Demirba.Mechanisms of liquefaction and pyrolysis reactions of biomass[J].Energy Conversion andManagement,2000,41(6):633-646.
    [72] Haruo Kawamoto,Takeshi Nakamura,Shiro Saka.Pyrolytic cleavage mechanisms of lignin-ether linkages: A study on p-substituted dimers and trimers[J].Holzforschung,2008,62(1):50-56.
    [73] D.J. Nowakowski, A.V. Bridgwater, D.C. Elliott, D. Meier,P. de Wild.Lignin fast pyrolysis: Results from an international collaboration[J].Journal of Analytical and Applied Pyrolysis,2010,88(1):53-72.
    [74] Guozhan Jiang, Daniel J. Nowakowski,Anthony V. Bridgwater.A systematic study of the kinetics of lignin pyrolysis[J].Thermochimica Acta,2010,498(1-2):61-66.
    [75] Connor MA,Salazar CM.Factors influencing the decomposition processes in wood particles during low temperature pyrolysis[C].In research in thermochemical biomass conversion,Phoenix,Arizona,USA, Bridgwater AV and Kuester JL,1988:164.
    [76] A. Bridgwater.Thermal biomass conversion and utilization-Biomass information system[M].ECSC-EC-EAEC, Brussels?Luxembourg,1996.
    [77] Diebold J and Scahill J.Production of primary pyrolysis oils in a vortex reactor.in production,analysis and upgrading of oils from biomass,ACS series,Denver,Colorado,1987:21-28.
    [78] Evans R J and Milne T A. Molecular characterization of the pyrolysis of biomass:fundamentals[J]. Energy and fuels,1987,1:123-137.
    [79] Y.F. Huang, W.H. Kuan, P.T. Chiueh,S.L. Lo.Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)[J]. Bioresource Technology,2011,102(3):3527-3534.
    [80] Haiping Yang, Rong Yan, Hanping Chen, etc.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J].Fuel,2007,86(12-13):1781-1788.
    [81] Hyun Ju Park, Jong-In Dong, Jong-Ki Jeon, etc.Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch[J]. Chemical Engineering Journal,2008,143(1-3):124-132.
    [82] Takashi Hosoya, Haruo Kawamoto,Shiro Saka.Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products[J].Journal of Analytical and Applied Pyrolysis, 2009,85(1-2):237-246.
    [83] Bradbury AGW,Sakai Y,Shafizdeh F. A kinetic model for pyrolysis of cellulose[J].Journal of applied polymer science,1979,23:3271-3280.
    [84] Antal, M.J. Jr.Effects of reactor severity on the gas phase pyrolysis of cellulose and kraft lignin derived volatile matter[J].Ind. Eng. Chem., Prod. Res. Dev.,1983,22:366-375.
    [85] Antal, M.J. Jr.A review of the vapour phase pyrolysis of biomass derived volatile matter. In Fundamentals of Thermochemical Biomass Conversion; Overend, T. A., Milne, R. P., Mudge, L. K., Eds.; Elsevier:New York, 1985:511-537.
    [86] Diebold J.The cracking kinetics of depolymerized biomass vapours in a continuous tubular reator,MSc thesis,Colorado School of Mines,Golden,CO,USA,1985.
    [87] Liden AG,A kinetics and heat transfer modeling study of wood pyrolysis in a fluidized bed,MASc thesis,University of Waterloo,Canada,1985.
    [88] R.G. Graham, M.A. Bergougnou,R.P. Overend.Fast pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis,1984,6(2):95-135.
    [89] A.V. Bridgwater.An overview of fast pyrolysis [C].Progress in the thermochemical biomass conversion,2001:977-997.
    [90] J. Piskorz,P. Majerski,etc.Flash pyrolysis of cellulose for production of anhydro-oligomers[J].Journal of Analytical and Applied Pyrolysis, 2000,56:145-166.
    [91]柏雪源,易维明等.玉米秸秆在等离子体加热流化床上的快速热解液化研究[J].农业工程学报, 2005,21(12):127-130.
    [92]修双宁,易维明等.秸秆类生物质闪速热解规律[J].太阳能学报,2005,26(4):538-542.
    [93]廖艳芬,王树荣.纤维素快速热裂解试验研究及分析[J].浙江大学学报,2003,37(5):582-601.
    [94]杨士春,刘荣厚.流化床生物质快速热解制液体燃料[J].河北建筑工程学院学报,2005,23(2):1-4.
    [95]朱锡锋,郑冀鲁,陆强,等.生物质热解液化装置研制与试验研究[J].中国工程科学,2006,8(10):89-93.
    [96] Carlo Perego,Aldo Bosetti.Biomass to fuels: The role of zeolite and mesoporous materials[J]. Microporous and Mesoporous Materials,Article in Press.
    [97] Gabriele Centi, Paola Lanzafame,Siglinda Perathoner.Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials[J]. Catalysis Today,Article in Press.
    [98] Daniele Fabbri, , Cristian Torria,Valentina Baravelli.Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: An analytical study[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):24-29.
    [99] Cristian Torri, Isidoro Giorgio Lesci,Daniele Fabbri.Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate[J]. Journal of Analytical and Applied Pyrolysis, 2009,84(1):25-30.
    [100]Kazuo Izawa,Masao Matsukura and Yoshiaki Ishizu.Curie-point pyrolysis of cellulose in the presence of potassium malate[J].Agric. Biol. Chem.,1990,54(4):957-963.
    [101]Zhi Wang,Qiang Lu,Xi-Feng Zhu,Ying Zhang,Catalytic Fast Pyrolysis of Cellulose to Prepare Levoglucosenone Using Sulfated Zirconia[J].ChemSusChem,2011,4(1):79–84.
    [102]Dobele, G.,Dizhbite, T., Rossinskaja, G.,Telysheva, G.,etc.Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis-A promising method for obtaining 1,6-anhydrosaccharides in high yields[J]. J. Anal. Appl. Pyrolysis,2003, 68–69:197–211.
    [103]G. Dobele, D. Meier, O. Faix, S. Radtke,etc. Volatile products of catalytic flash pyrolysis of celluloses[J]. Journal of Analytical and Applied Pyrolysis,2001,58–59:453–463.
    [104]Fabbri, D., Torri, C., Mancini, I. Pyrolysis of cellulose catalysed by nano powder metal oxides:production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem.,2007,9,1374–1379.
    [105]Andrea Defant, Ines Mancini, Cristian Torri, Danilo Malferrari and Daniele Fabbri.An efficient route towards a new branched tetrahydrofuraneδ-sugar amino acid from a pyrolysis product of cellulose[J]. Amino Acids,2010,40(2):633-640.
    [106]Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.,The catalytic valorization of lignin for the production of renewable chemicals[J].Chem. Rev.,2010,110:3552-3599.
    [107]Takashi Hosoya, Haruo Kawamoto,Shiro Saka.Secondary reactions of lignin-derived primary tar components[J].Journal of Analytical and Applied Pyrolysis,2008,83(1):78-87.
    [108]R.W. Thring,J. Breau.Hydrocracking of solvolysis lignin in a batch reactor[J].Fuel,1996,75(7):795-800.
    [109]Sheu, Y. H. E., R. G. Anthony, E. J. Soltes.Kinetic Studies of Upgrading Pine Pyrolytic Oil by Hydrotreatment[J]. Fuel Process. Technol.,1988,19,31–50.
    [110]R.K. Sharma and N.N. Bakhshi,Catalytic upgrading of pyrolysis oil[J], Energy Fuels,1993,7:306-314.
    [111]Adjaye J D,Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil.Part I:Conversion over various catalysts[J]. Fuel Processing Technology,1995,45:161-183.
    [112]J. S. Shabtai, W. W. Zmierczak, E. Chornet.Process for conversion of lignin to reformulated hydrocarbon gasoline[P].US Patent5959167,1999.
    [113]J. E. Miller, L. Evans, A. Littlewolf, D. E. Trudell.Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J].Fuel 1999,78(11):1363-1366.
    [114]S. Nenkova, T. Vasileva, K. Stanulov. Lignin as a base material for materials applications: chemistry, application and economics[J].Ind. Crops Prod.,2008:27:202–207.
    [115]A. Oasmaa, A. Johansson.Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst[J].Energy & Fuels,1993, 7:426-429.
    [116]Dietrich Meiera, Ronald Antea and Oskar Faix.Catalytic hydropyrolysis of lignin: Influence of reaction conditions on the formation and composition of liquid products[J]. Bioresource Technology,1992,40(2):171-177.
    [117]Nagy, M.; David, K.; Britovsek, G.J. P.; Ragauskas, A. Catalytic hydrogenolysis of ethanol organosolv lignin[J].J., Holzforschung,2009, 63(5):513-520.
    [118]W. Partenheimer,The Aerobic Oxidative Cleavage of Lignin to Produce Hydroxyaromatic Benzaldehydes and Carboxylic Acids via Metal/Bromide Catalysts in Acetic Acid/Water Mixtures[J].Adv. Synth. Catal.,2009, 351-456.
    [119]Jia, S., Cox, B.J., Guo, X., Zhang, Z.C., Ekerdt, J.G. Hydrolytic cleavage ofβ-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides[J].Industrial and Engineering Chemistry Research,2010,50 (2):849-855.
    [120]Alonso, D.M., Bond, J.Q., Dumesic, J.A.Catalytic conversion of biomass to biofuels[J].Green Chemistry,2010, 12 (9):1493-1513.
    [121]Hanson, S.K., Baker, R.T., Gordon, J.C., Scott, B.L., Thorn, D.L.Aerobic oxidation of lignin models using a base metal vanadium catalyst[J].Inorganic Chemistry,2010,49(12):5611-5618.
    [122]Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.The catalytic valorization of lignin for the production of renewable chemicals.[J].Chemical Reviews,2010,110 (6):3552-3599.
    [123]Y. Romero, F. Richard, Y. Renème,S. Brunet.Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst[J].Applied Catalysis A: General,2009,353(1):46-53.
    [124]Rui Lou,Shu-bin Wu.Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin[J]. Applied Energy,2011,88(1):316-322.
    [125]Charles A. Mullen,Akwasi A. Boateng.Catalytic pyrolysis-GC/MS of lignin from several sources[J].Fuel Processing Technology,2010,91(11):446-1458.
    [126]Ming-qiang Chen, Jun Wang, Ming-xu Zhang, Ming-gong Chen, Xi-feng Zhu.Catalytic effects of eightinorganic additives on pyrolysis of pine wood sawdust by microwave heating[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):145-150.
    [127]Pushkaraj R. Patwardhan, Justinus A. Satrio, Robert C. Brown,Brent H. Shanks. Influence of inorganic salts on the primary pyrolysis products of cellulose[J].Bioresource Technology,2010101(12):4646-4655.
    [128]R. Fahmi, A.V. Bridgwater, I. Donnison, N. Yates,J.M. Jones.The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stabilityFuel,2008,87(7):1230-1240.
    [129]Sait Yorgunand Yunus Emre ?im?ek.Catalytic pyrolysis of Miscanthus×giganteus over activated alumina Bioresource Technology[J].2008,99(17):8095-8100.
    [130]Maiko Nishimura, Satoko Iwasakiand Masayuki Horio。The role of potassium carbonate on cellulose pyrolysis[J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(6):630-637.
    [131]Richard French,Stefan Czernik.Catalytic pyrolysis of biomass for biofuels production[J].Fuel Processing Technology,2010,91(1):25-32.
    [132]Funda Ate?, M. Asl? I??kda?.Influence of temperature and alumina catalyst on pyrolysis of corncob[J].Fuel,2009,88(10):1991-1997.
    [133]Yiqin Wan, Paul Chen, Bo Zhang,etc. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):161-167.
    [134]Denghui Wang, Rui Xiao, Huiyan Zhang,Guangying He.Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA-FTIR analysis[J].Journal of Analytical and Applied Pyrolysis,2010,89(2):171-177.
    [135]Torren R. Carlson, Geoffrey A. Tompsett, William C. Conner and George W. Huber.Aromatic production from catalytic fast Pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3): 241-252.
    [136]Torren R.,Tushar P.,etc. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass[J].Chemsubchem,2008,1:397-400.
    [137]Qiang Lu,Zhi-Fei Zhang, Chang-Qing Dong,Xi-Feng Zhu.Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study[J]. Energies,2010,3(11):1805-1820.
    [138]Qiang Lu,Zhi-Fei Zhang, Chang-Qing Dong,Xi-Feng Zhu.Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds[J].BioresourceTechnology,2009,100(20):4871-4876.
    [139]Lu, Q.,Zhang, Y., Tang, Z., Li, W., Zhu, X. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel,2010, 89:2096-2103.
    [140]Chen, M.Q.,Wang, J.,Zhang, M.X.,Chen, M.G.,Zhu, X.F.; Min, F.F.,Tan, Z.C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J].J. Anal. Appl. Pyrolysis 2008, 82, 145-150.
    [141]Li, J.F.,Yan, R., Xiao, B., Liang, D.T., Lee, D.H. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components[J]. Energy Fuels 2008, 22, 16-23.
    [142]Lu Qiang, Li Wen-zhi, Zhang Dong,Zhu Xi-feng.Analytical pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2009,84(2):131-138.
    [143]Hyun Ju Park, Hyeon Su Heo, Jong-Ki Jeon, etc.Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites[J].Applied Catalysis B: Environmental,2010,95(3-4):365-373.
    [144]Scott, D.S.,S. Czernik,J. Piskorz and D. Radlein.Sugar from biomass cellulose by a thermal conversion process[C].Energy from Biomass and wastes XIII,New Oreans,LA,USA, Inst of Gas Technology,Chicago,IL,USA,1989,1349-1362.
    [145]Piskorz,J,,P. Majerski,D. Radlein,etc.Economics of the production of fermentable sugars from biomass by fast pyroIysis[C].Third Biomass Conference of the Americas,Montreal,Ontario,1997.
    [146]Brown,R.C.,D.Radlein and J.Piskorz1.Pretreatment processes to increase pyrolytic yield of levoglucosan from herbaceous feedstocks chemicals and materials from renewable resources[C].ACS Symposium Series No.784.Washington,D.C., American Chemical Society,2001,123-132.
    [147]C. Acikgoz a, O.M. Kockar b.Flash pyrolysis of linseed (Linum usitatissimum L.)for production of liquid fuels[J].J. Anal. Appl. Pyrolysis, 2007,78: 406–412.
    [148]Kleen, M. and Gellerstedt, G. Influence of inorganic species on the formation of polysaccharide and lignin degradationproducts in the analytical pyrolysis of pulps[J]. J. Anal. Appl. Pyrolysis,1995,35:15-41.
    [149]Monties B. Lignins[C]. Methods in Plant Biochemistry,Academic Press,1989,1:113-157.
    [150]H. Pakdel, J. N. Munvanashyaka and C. Roy. Fractional vacuum pyrolysis of biomass for high yields ofphenolic compounds[C]. Progress in Thermochemical Biomass Conversion,2001, Vol2:1564-1576.
    [151]Miller RS, Bellan J. A generalized pyrolysis model based on superimposed cellulose hemicellulose and lignin[J].Combustion Science and Technology 1997;126:1-6.
    [152]Elder T. J.Pyrolysis of wood(C). Wood and Cellulosic Chemistry, Dekker Inc. New York,1991: 665-702.
    [153]Piskorz, J., Radlein D.St.A.G. and Scott D.S. Pretreatment of wood and cellulose for production of sugars by fast pyrolysis[J].J. Anal. Appl. Pyrolysis, 1989,16:127-142.
    [154]Russell J.M.Miller R.K & Molton P. Formation of aromatic aompounds from condensation reactions of cellulose degradation products[J].Biomass, 1983,3:43-57.
    [155]Shafizadeh, F. and Y.L. Fu. Pyrolysis of Cellulose[J].Carbohydrate Research,1973,29:113-122.
    [156]Alen R., Kuoppala E. & Oesch P.Formation of the main degradation compound groups from wood and its composition during pyrolysis[J].J. Anal.Appl. Pyrolysis, 1996,36:137-148.
    [157]Hosoya, T., Kawamoto, H. and Saka, S.Oxime-trimethylsilyl method for analysis of wood pyrolysate[J].J. Appl. Anal. Pyrolysis,2006,77:121-126.
    [158]Pouwels, A.D., Eijkel, G.B. and Boon, J.J. Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose[J].J. Anal. Appl. Pyrolysis, 1989,14:237-280.
    [159]Ramiah, M.V. Thermogravimetric and differential thermal analysis of cellulose,hemicellulose, and Lignin[J]. Journal of Polymer Science 1970,14:1323-1337.
    [160]Broido, A., A.C. Javier-son, A.C. Ouano, and E.M. Barrall. Molecular Weight Decrease in the Early Pyrolysis of Crystalline and Amorphous Cellulose[J]. Journal of Applied Polymer Science,1973,17:3627-3635.
    [161]Shafizadeh, F. and A.G.W. Bradbury. Thermal degradation of cellulose in air and nitrogen at low temperatures[J]. Journal of Applied Polymer Science. 1979,23:1431-1442.
    [162]Antal, M.J. Jr. Biomass pyrolysis: A review of the literature Part 1- Carbohydrate Pyrolysis[J]. In Advances in Solar Energy,1983:61-109.
    [163]Shafizadeh, F., R.H. Furneaux, T.G. Cochran, J.P. Scholl and Y. Sakai. Production of levoglucosan and glucose from pyrolysis of cellulosic materials[J]. Journal of Applied Polymer Science,1979, 23:3525-3539.
    [164]Lin L,Yao Y,YoShioKa M, et al. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts[J]. Holzforschung,1997,51(4):316-324.
    [165]Brezny RI,Surina,KoSik M. Low temperature thermolysis of lignins. II. thermofractography and thermal analysis ofβ-O-4 model compounds[J]. Holzforschung,1984,38(1):19-14.
    [166]Domgurg G,Rossinskaya G,Sergeeva V. Study of thermal stability ofβ-ether bonds in lignin and its models. thermal analysis[C]. Proceedings of the 4th International Conference,Budapest,1974, 2:211-220.
    [167]Jegers HE,Klein MT. Primary and secondary lignin pyrolysis reaction pathways industrial engineering chemical processing[J]. Design and Development, 1985,24(1):173-183.
    [168]Halpern, Y.; Riffer, R. & Broido, A.. Levoglucosenone (1,6-Anhydro-3,4-dideoxy-Δ3-β-D-Pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates[J]. J. Org. Chem.,1973,38:204-209.
    [169]G. Dobele, G. Rossinskaja, G. Telysheva, D. Meier,O. Faix.Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J], Journal of Analytical and Applied Pyrolysis, 1999, 49:307–317.
    [170]D. Fabbri, R. Helleur.Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates[J].Journal of Analytical and Applied Pyrolysis 1999,49 : 277–293.
    [171]Jiang Zehui.Bamboo and rattan in the world[M].Beijing,China Forestry Publishing House,2007.
    [172]Jim Ball, Jim Carle, and Alberto Del Lungo, Contribution of poplars and willows to sustainable forestry and rural development[J].Unasylva,221,2005,56: 3–9.
    [173]G.Taylor, K. Robinson .Identifying physiological traits for yield in biomass willow[M]. Southampton, University of Southampton,2003.
    [174]潘明建,郭群,王宝松.中国柳树育种概述[J].中国造纸学报,2004,增刊:392-395.
    [175]Harker JH, Backhurst J. Fuel and energy[M].London,Academic Press Limited,1981.
    [176]Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J].Fuel Process Technol,2004,85:1201–1211.
    [177]Zanzi R, Bai X, Capdevila P, etc. Pyrolysis of biomass in presence of steam for production of activated carbon, liquid and gaseous fuels[C]. In Proceedings of the 6th world congress of chemical engineering, vol. 1, Melbourne, Australia; 2001.
    [178]Putun AE, Apaydin E, Putun E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy 2004,29:2171-2180.
    [179]Putun AE, Apaydin E, Putun E. Bio-oil production from pyrolysis and steam pyrolysis of soybean cake: product yields and composition[J].Energy 2002;27:703-713.
    [180]K. Elharfi , A. Mokhlisse, M. Ben Chanaa. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale[J]. Journal of Analytical and Applied Pyrolysis, 1999,48:65–76.
    [181]A. Ponzio, W. Yang, C. Lucas, and W. Blasiak.Development of a Thermally Homogenoeous Gasifier System Using High-Temperature Agents[J]Clean Air,2006,7:363-379.
    [182]A. Ponzio, S. Kalisz, and W. Blasiak.Effect of operating conditions on tar and gas composition in High Temperature air/steam gasification (HTAG) of plastic containing waste[J]. Fuel Processing Technology,2006,87:223-233.
    [183]E. Kantarelis, P. Donaj, W. Yang, and A. Zabaniotou.Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)[J].Journal of Hazardous Materials,2009,167:675-684.
    [184]Putun E.,Uzun B.B.,Putun A.E.Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere [J].Biomass and Bioenergy, 2006,30(6):592-598.
    [185]Jung, S.H.,Kang, B.S.,Kim, J.S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J],Journal of Analytical and Applied Pyrolysis,2008,82(2):240-247.
    [186]Ayse E. Pütün, Esin Apaydin, and Ersan Pütün. Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition[J].Energy,2002, 27:703-713.
    [187]Beckman, D., Elliott, D.,Gevert, B.,etal.Techno-economical assessment of selected biomass liquefaction process; VTT: Espoo, Finland, 1990,Vol. 695.
    [188]陆昌伟,奚同庚.热分析质谱法[M].上海科学技术文献出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700