MiR143和C-Myc在直肠腺癌中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验拟从直肠腺癌、直肠腺瘤和直肠良性病变组织的miRNA-143表达差异及c-Myc蛋白表达,从而研究miRNA-143, c-Myc与直肠腺癌之间的内在联系及表达与直肠腺癌临床病理特征的关系。
     方法:
     MicroRNA-143的表达
     收集中南大学湘雅二医院2006年12月~2010年1月术后病检结果已经证实的直肠标本60例,其中直肠腺癌20例,直肠腺瘤20例,直肠良性病变20例。提取石蜡包埋的肿瘤组织和直肠良性病变组织的总RNA,采用美国Applied Biosystems公司设计的特异茎环状引物进行逆转录反应,以U6为内参照基因,实时定量PCR技术检测MicroRNA-143的表达。根据实时获得的反应初始浓度的Ct值,分别计算各样本的△Ct值,再用SPSS16·0软件进行双尾异方差t检验。
     免疫组化分析c-Myc蛋白含量
     收集中南大学湘雅二医院2006年12月-2010年1月术后病检结果已经证实的直肠标本75例,其中直肠腺癌35例,直肠腺瘤20例,直肠良性病变20例,并用免疫组化链霉菌抗生物素蛋白-过氧化物酶连接法(S-P法)检测C-Myc在直肠腺癌、腺瘤和直肠良性病变中的表达。采用χ2检验。P<0.05差异有显著性。统计学分析均采用SPSS16·0软件包完成。
     结果:
     直肠腺癌组织的miRNA-143表达显著低于直肠良性病变组织的MicroRNA-143表达。(P<0.05)。
     直肠腺癌组织的miRNA-143表达显著低于直肠腺瘤组织的MicroRNA-143表达。(P<0.05)。
     直肠腺瘤组织的miRNA-143表达总体低于直肠良性病变组织的MicroRNA-143表达。(P=0.084>0.05)不具有统计学意义。
     miRNA-143的表达与直肠腺瘤的不典型增生程度有相关性。(P<0.05)。
     直肠腺癌组织的C-Myc阳性表达率(74.3%)显著高于直肠良性病变组织阳性表达率(15.o%)。(χ2=15.647 P<0.05)。
     直肠腺癌组织的C-Myc阳性表达率(74.3%)显著高于直肠腺瘤组织的阳性表达率(45.o%)。(χ2=4.717 P<0.05)。
     直肠腺瘤组织的C-Myc阳性表达率(45.0%)高于直肠良性病变组织的阳性表达率(15.o%)。(χ2=4.286 P<0.05)。
     结论
     1 MicroRNA-143的低表达与直肠腺癌的发生相关。
     2 C-myc过度表达与直肠腺癌的发生相关。
     3 MiRNA143和C-Myc在直肠腺癌中的表达,不能作为直肠腺癌恶性程度及预后的有效评估指标。
     4 MiRNA143的低表达有望成为诊断早期直肠腺癌的依据之一。
     5 MiRNA-143表达降低可能是原癌基因C-myc高表达的原因之一,可能是诱发直肠腺癌的重要途径,并在直肠腺癌发生中起重要作用。
Objective:To investigate the expression of c-myc and microRNA-143 in the benign rectal lesion, rectal adenoma and rectal adenocarcinoma tissue.Compare their expression difference in a bove tissues,also with clinical pathological features in rectal adenocarcinoma.
     Methods:Collection of 20 rectal adenocarcinomas,20 adenomas and 20 benign rectal lesions in operations in the 2nd Xiangya hospital of Central South University from December 2006 to January 2010.Total RNA was extracted from paraffin-embedded rectal cancer tissues and corresponding benign lesion tissues. Reverse transcription reactions were done with special looped primer from Applied Biosystems. The expression of miR-143 were then detected by real time PCR with a reference gene U6. We calculated△Ct values of each sample and analized on 2-△Ct by t-test statistical method.
     Collection of 35 rectal adenocarcinomas,20 adenomas and 20 benign rectal lesions in operations in the 2nd Xiangya hospital of Central South University from December 2006 to January 2010.The expressions of c-Myc protein in benign lesion rectal tissues(n=20), adenoma tissues(n=20) and primary rectal adenocarcinoma tissues(n=35) were observed by S-P immunohi to chemical assay.
     Results The results showed that the expression of miRNA-143 in rectal adenocarcinoma tissues was lower significantly than that in benign lesion tissues.(P<0.05)
     The expression of miRNA-143 in rectal adenocarcinoma tissues was lower significantly than that in adenoma tissues.(P<0.05)
     The expression of miRNA-143 in adenoma tissues was lower than that in benign lesion tissues.(P>0.05)
     The expression lever of miRNA-143 was correlated with the degree of atypical hyperplasia in rectal adenocarcinoma. (P<0.05)
     The expression rate of c-Myc in the rectal adenocarcinoma tissues(74.3%) was significantly higher than that in the benign lesion tissues(15.0%). (χ2=15.647 P<0.05)
     The expression rate of c-Myc in the rectal adenocarcinoma tissues(74.3%) was significantly higher than that in the adenoma tissues(45.0%). (χ2=4.717P<0.05)
     The expression rate of c-Myc in the adenoma tissues(45.0%) was significantly higher than that in the benign lesion tissues(15.0%). (χ2=4.286 P<0.05)
     Conclusion:1 The expression of miRNA-143 decreased from benign lesion tissues, adenoma to rectal adenocarcinoma. Our study showed that the down-regulation of miRNA-143 were associated with rectal carcinogenesis. Formalin-fixed paraffin-embedded specimens could act as satisfactory resources for miRNA study.
     2 The overexpression of c-Myc from benign lesion tissues,adenoma to rectal adenocarcinoma.There were statistical significance between every two groups. Our study showed that the overexpression of c-Myc may play a pivotal role in the carcinogenesis of rectal adenocarcinoma.
     3 Both miRNA-143 and c-Myc protein expression in primary rectal adenocarcinoma had no significant correlation with patient's sex,age,cell differentiation level, Dukes stages and lymph nodes metastasis or not.
     4 The lower-expression of miRNA-143 could be regarded as one of the parameters for early diagnosis of rectal adenocarcinoma.
     5 The lower-expression of miRNA-143 may be lead to the overexpression of c-Myc in rectal adenocarcinoma,which contributes to the rectal carcinogenesis may be conferred through transactivation of c-Myc by miRNA-143.
引文
[1].李莉,温旺荣,朱晴晖.微小RNA及其表达水平检测方法的研究进展[J].检验医学,2009,24(4):316-320.
    [2]. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J].Cell, 2004,116(2):281-297.
    [3]. Llave C,Xie Z,Kasschau K D,et al.Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J].Science,2002, 297(5589):2053-2056.
    [4]. Hutvagner QZamore PD.A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297(5589):2056-2060.
    [5]. Doench JQSPetersen CP,Sharp PA.siRNAs can function as miRNAs [J].Genes & Development,2003,17(4):438-442.
    [6]. harfe B D.MicroRNAs in vertebrate development[J].Curropin Genet Dev,2005,15(4):410-415.
    [7]. Xi Y,Shalgi R,Fodstad O,et al. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer[J]. Clin Cancer Res,2006,12(7):2014-2024.
    [8]. Fabbri M CG,Calin GA.MicroRNAs.Cancer J.2008,14(1):1-6.
    [9]. Negrini M CG.Breast cancer metastasis:a microRNA story.Breast Cancer Res.2008,10(2):203.
    [10].Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002[J],CA Cancer J clin,2005,55(2):74.
    [11].Harnicarova A,kozubek S,Pachernik J,et al.Distinct nuclear arrangement of active and inactive c-Myc genes in control and different iated coion carcinoma cells[J].Exp cell Res,2006,312(20):4019-4035.
    [12].Akao Y,Nakagawa Y,Naoe T.MicroRNAs 143 and 145 are possible common onco-microRNA in human cancers.Oncol Rep,2006,16(4):845-850.
    [13].Fearon ER,Vogelestein B.Agenetic model for colorectal tumorigenesis. Cell,1990;611759.
    [14].Lee RC,Feinbanm RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5):843-854.
    [15].Ambros V.The functions of animal MicroRNAs.Nature,2004,431(7006): 350-355.
    [16]. Cummins JM, He Y, Leary RJ, Pagliarini R, DiazLA Jr, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labourier E, Raymond CK, Roberts BS, Juhl H, Kinzler KW, Vogelstein B, Velculescu VE. The rectal microRNAome. Proc Natl Acad Sci U S A 2006,103:3687-3697.
    [17].Monzo M, Navarro A, Bandres E, Artells R Moreno I, Gel B, Ibeas R, Moreno J, Martinez F, Diaz T, Martinez A, Balague O, Garcia-Foncillas J.Overlapping expression of microRNAs in human embryonic colon and rectal cancer. Cell Res 2008;18:823-833.
    [18].凌奇荷.结直肠息肉诊断和治疗新进展.中国医师杂志,2000,12:133-136.
    [19].来茂德.结直肠癌早期病变概念的变更[[J].中华消化内镜杂志,2003,20(6):431-432.
    [20].Michael MZ, SM OC, van Holst Pellekaan NG, et aL.Reduced accumulation of specific MicroRNAs in rectal neoplasia. Mol Cancer Res,2003,1 (12):882-891.
    [21].Cyrielle Clape',Vanessa Fritz,Corinne Henriquet,et al,miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice,PLoS One 2009,4:e7542.
    [22].Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation[J]. J Biol Chem 2004; 279:52361-52365.
    [23].Watson DI,Wijnhoven BP,Michael MZ,et aL.MicroRNA expression profiles in Barrett's oesophagus. ANZ J Surg,2007,77Suppl1:A45.
    [24].YUKIHIRO AKAO, YOSHIHITO NAKAGAWA, TOMOKI NAOE, et al,MicroRNA-143and-145 in Colon Cancer,DNA AND CELL BIOLOGY,2007.5(24):311-320.
    [25].Kelly Cude, Yupeng Wang, Hyun-Jung Choi,et al,Regulation of the G2-M cell cycle progression by the ERK5-NFκB signaling pathway,The Journal of Cell Biology,2007,177(2):253-264.
    [26].Yukihiro Akao, Yoshihito Nakagawa, Akio Iio, et al,Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells,Leukemia Research 33 (2009):1530-1538.
    [27].Hoffmaa B. Amanullah A, Shafarcnko M.et al. The protooncogene c-myc in hematopoietic development and leukemogenesis. Oncogene.2002.21(21):3414-3421.
    [28].Brabletz T, Hemmann K, Jung A, et al. Expression of nucllear beta catenin and c-myc is correlated with tumor size but not with proliferative activity of rectal adenomas[J] Am J Pathol,2000,156(3):865-870.
    [29].Bondi J, Bukholm G, Nesland,JM, et al. Expression of nonmembranous beta-catenin and gamma-catenin, c-Myc and cyclin D1 in relation to patient outcome in liuman colon adenocarcinomas [J].APMIS.2004,112(1):49.
    [30]. Shimizu M, Raitoh Y, Ltoh H, et al. Immunohistochemical staining of Ha-ras oncogene product in normal,benign,and malignant human pancreatic tissues[J]. Hum pathol,1990, 21(6):607-612.
    [31].刘剑仑,葛莲英,张贵年.P53. c-myc.PCNA在大肠癌过度表达的临床意义[J].大肠肛门病外科杂志.2004.1(10):21.
    [32]. Konopka B, Janiec-Jankowska A, Paszko Z, et al.The coexistence of ERBB2,INT2,and C-myc oncogene amplifications and PTEN gene mutations in endometrial carcinoma [J].J Cancer Res Clin Oncol,2004,130 (2):114-121.
    [33]. Asano T,Yao Y,Zhu J,et al. The P13-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells[J].Oncogene,2004,23 (53):8571-8580.
    [1]. Khvomva A, Reynolds A, Jayasena SD. Functional、sRNAs、and miRNAs、 exhibit strand hias[J]. Cell 2003,115(2):209-216.
    [2]. Lee RC, Feinbaum RL, Ambros V The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993, 75:843-854.
    [3]. Lewis BP,Shih I,Jones-Rhoades MW,et aLPrediction of mammalian microRNA targets [J].Cel 1,2003,115:787.
    [4]. Doench JG, Peterson CP, Sharp PA.SiRNAs can function as miRNAs[J]. Genes Dev,2003,17:438.
    [5]. Yekta S,Shih IH,Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science,2004,304:594.
    [6]. Johnson SM,Grosshans H, Shingara J,et al.RAS is regulated by the let-7 microRNA family.Cell,2005,120(5):635-647.
    [7]. Ciafre SA,Galardi S,Mangiola A,et al.Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun,2005,334(4):1351-1358.
    [8]. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [9]. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798.
    [10]. Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, Rougvie AE. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell,2003, 4(5)625-637.
    [11]. John B, Enright AJ, Aravin A, Tuschl T, Sander C,Marks DS. Human microRNA targets. PLoS Biol,2004,2(11):363.
    [12]. Ambros V. The functions of animal microRNAs. Nature,2004,431(7006): 350-355.
    [13]. Cimmino A, Calin G A, Fabbri M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2[J].Proc Natl Acad Sci U S A,2005, 102(39):13944-13949.
    [14]. Medina PP,Slack FJ.microRNAs and cancer an overview[J].Cell Cycle.2008,7(16):2485-2492.
    [15]. Costinean S, Zanesi N.PekarskyY, et al. Pre-B cell proliferationand lymplioblastic leukania/high grade lymphoma in E(mu)-miR155 transgenic mice[J].Proc Natl Acad Sci USA,2006,103(18):7024-7029.
    [16]. Dorsett Y, McBride KM.Jankovic M.et al. MicroRNA-155 suppreses activation-induced cytidine deam inase-mediated Myc-Igh translocation [J].Immunity,2008,28(5):630-638.
    [17]. Teng QHakinpour P,Landgraf P,et al.MicroRNA-155 is a negative Regulator of activation-induced cytidine deam in ase[J].Immunity,2008,28(5):621-629.
    [18]. Lujambio A, Calin GA, Villanueva A, et al microRNA DNA methylation signature for hmnan cancermetastasis[J] Proc Natl Acad Sci U S A,2008, 105(36):13556-13561.
    [19]. Akao Y,Nakagawa Y,Naoe T.MicroRNAs 143 and 145 are possible common onco-microRNA in human cancers.Oncol Rep,2006.16(4):845-850.
    [20]. YUKIHIRO AKAO, YOSHIHITO NAKAGAWA, TOMOKI NAOE, et al,MicroRNA-143and-145 in Colon Cancer,DNA AND CELL BIOLOGY,2007.5(24):311-320.
    [21]. Michael MZ, SM OC, van Holst Pellekaan NG, et aL.Reduced accumulation of specific MicroRNAs in rectal neoplasia. Mol Cancer Res,2003,1 (12): 882-891.
    [22]. Akao Y,Nakagawa Y,Naoe T.MicroRNAs 143 and 145 are possible common onco-microRNA in human cancers.Oncol Rep,2006.16(4):845-850.
    [23]. Kelly Cude, Yupeng Wang, Hyun-Jung Choi,et al,Regulation of the G2-M cell cycle progression by the ERK5-NFκB signaling pathway,The Journal of Cell Biology,2007,177(2):253-264.
    [24]. Yukihiro Akao, Yoshihito Nakagawa, Akio Iio, et al,Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells,Leukemia Research 33 (2009):1530-1538.
    [25]. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J].Gell,2005,120(5):635-647.
    [26]. Fang WJ, Lin GZ, Zhang HH, et al. Detection of let-7a microRNA by real-time PCR in colorectal cancer:a single-centre experience from Ghina[J].J Int Med Res,2007,35(5):716-723.
    [27]. Akao Y,Nakagawa Y,Naoe T.MicroRNAs 143 and 145 are possible common onco-microRNA in human cancers.Oncol Rep,2006,16(4):845-850.
    [28]. Calin GA,Sevignani C,Dumitru CD,et al.Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J].Proc Natl Acad Sci U S A,2004,101(9):2999-3004.
    [29]. Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem, 2007,282(45):32582-32590.
    [30]. Lanza G, Ferracin M, Gafa R, et al. mRNA/microRNA gene expression profile in microsatellite unstable rectal cancer. Mol Cancer,2007,6:54.
    [31]. Bandies E, Cubedo E, Agirre X, et aL. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in rectal cancer and non-tumoraL tissues. Mol Cancer,2006,5:29.
    [32]. Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res,2007,56 (3):248-253.
    [33]. Asangani IA, Rasheed SA, Nikolova DA, et aL. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in rectal cancer. Oncogene,2008,27 (15):2128-2136.
    [34]. Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A,2007,104(39): 15472-15477.
    [35]. Mitchell PS, Parkin RK, Kroh EM, Fritz BR,Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL,Gentleman R, Vessella RL, Nelson PS, Martin DB,Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad sci USA 2008; 105:10513-10518.
    [36]. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18:997-1006.
    [37]. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA Bowman ED, Yanaihara N, Yuen ST, Chan TL,Kwong DL, Au GK, Liu CG, Calin GA, CroceCM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008;299:425-436.
    [38]. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, Wiuf C, Sorensen FJ, Kruhoffer M, Laurberg S, Kauppinen S, Qrntoft TF, Andersen CL. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer. Cancer Res.2008;68:6416-6424.
    [39]. Zhang B,Pan X,Cobb GP,et al.microRNAs as oncogenes and tumosuppressors.Dev Biol,2007,302(1):1-12.
    [40]. Kloosterman WP, Wienholds E, de Bruijn E, et aL. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods, 2006,3(1):27-29.
    [41]. Thompson RC, Den M, Turner DL. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes. Methods, 2007,43(2):153-161.
    [42]. Maziere P, Enright AJ. Prediction of microRNA targets.Drug Discov Today, 2007,12(11-12):452-458.
    [43]. Rajewsky N.microRNA target predictions in animals [J]. Nature Genetics Supplement,2006,38:s8-s13.
    [44]. TetzlafF MT LA, Xu X, Master SR, Baldwin DA, Tobias JW, Livolsi VA, Baloch ZW. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol.2007;18(3):163-173.
    [45]. Hoefig KP TC, Roehle A, Kaehler C, Wesche K0, Repsilber D, Branke B, Thiere M,Feller AC, Merz H. Unlocking pathology archives for microRNA-profiling. Anticancer Res.2008;28(1A):119-123.
    [46]. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J].Cell, 2004,116(2):281-297.
    [47]. Llave C,Xie Z,Kasschau K D,et al.Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J].Science,2002, 297(5589):2053-2056.
    [48]. Hutvagner QZamore PD.A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science,2002,297(5589):2056-2060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700