合金平面价电子结构及其铁碳合金二元合金元素原子的定态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子的性质主要由外层价电子结构所决定,当大量的原子聚合成合金(材料)时,合金的性质也将主要由凝聚态原子的价电子结构所决定。余氏理论(The Empirical Electron Theory of Solids and Molecules,简称EET理论)的创立为合金价电子结构的计算提供了理论方法,使从理论上对合金进行成分设计成为可能。铁碳合金作为主要金属用材,在各个行业得到了广泛的应用,并具有其不可替代性。因此研究铁碳合金的价电子结构对于新型优良性能钢铁材料的研制有着重要指导作用。
     本文以余氏固体与分子经验电子理论(EET)和程氏改进的TFD理论(Improved Thomas-Fermi-Dirac theory)为指导,应用平面价电子结构的计算方法和原子状态判定因子w,在研究铁碳合金基础上,深入研究了二元合金奥氏体与合金马氏体中各原子的杂化状态。当合金中存在异相界面且按一定的位向关系相匹配时,原子的定态除了要考虑键距差|ΔD|的大小之外,同样要考虑界面相对电子密度差Δρ的大小。本文所采用原子状态判定因子w综合考虑了这两种因素的影响,以键距差和相对电子密度差计算方法为基础编写VC++程序,实现了对各元素杂阶的扫描计算,并利用计算所得的信息从价电子结构的角度研究并确定了Fe-C-Mx-My合金奥氏体和Fe-C-Mx-My合金马氏体的价电子结构,界面电子结构及晶胞中原子的杂化状态。
     在Fe-C-Mx-My合金奥氏体的研究中,通过分析Fe-C奥氏体(111)晶面和Fe-C-Mx-My合金奥氏体(111)晶面的价电子结构,应用原子杂化状态判定因子w来确定合金奥氏体中原子的杂化状态。结果表明:在Fe-C-Cr-Ni晶胞中,Fec、Fef、Cr、Ni的杂化状态分别为B14、B15(或B16)、A7(或A8或A6)和B10(或B11)阶;在Fe-C-Cu-Cr晶胞中,Fec、Fef、Cu、Cr原子的杂化状态分别为B15、B16、B8(或B10或B9)和A7(或A8或A6)阶;在Fe-C-Ni-Mn晶胞中,Fec、Fef、Ni、Mn原子的杂化状态分别为B14、B15(或B16)、B8(或B10或B11)和C11(或C12)阶;在Fe-C-V-Mn晶胞中,Fec、Fef、V、Mn原子的杂化状态分别为B15、B16(或B17)、C12(或C13或14)和C11阶;在Fe-C-Mo-Cr晶胞中,Fec、Fef、Mo、Cr原子的杂化状态分别为B16、B17(或B18)、C5(或C6)和A10(或A11)阶。
     在Fe-C-Mx-My合金马氏体原子杂化状态的研究中,根据奥氏体向马氏体转变过程中,新相马氏体的(110)面平行于母相奥氏体的(111)晶面,即存在着(111)γ//(110)α位向关系,通过分析Fe-C-Mx-My合金奥氏体(111)晶面和Fe-C-Mx-My合金马氏体(110)晶面的价电子结构,应用原子杂化状态判定因子w确定合金马氏体中原子的杂化状态。结果表明:在Fe-C-Cr-Ni晶胞中,FeⅡ、FeⅢ、Cr、Ni的杂化状态分别为A15、A13、A14(或A15)和A14(或A15)阶;在Fe-C-Cu-Cr晶胞中,FeⅡ、FeⅢ、Cu、Cr原子的杂化状态分别为A15、A14、A16(或A17或A18)和A15阶;在Fe-C-Ni-Mn晶胞中,FeⅡ、FeⅢ、Ni、Mn原子的杂化状态分别为A14(或A13)、A11(或A12)、A11(或A10)和A5(或A6或A7)阶。
As atoms’s nature mainly depends on its outer layer valence electron structure, when a large number of atoms aggregate into the alloy (materials), alloy’s nature is mainly determined by the valence electron structure of condensed atoms. Yu’s theory provides a theoretical approach of calculating alloys valence electron structure,which makes theoretically alloy composition design become possible. Meanwhile iron-carbon alloy material as the main metal used in various industries has been widely used and has its irreplaceable. Therefore, research on valence electronic structure of iron-carbon alloy has an important guiding role in the developing new types of excellent performance of steels.
     In this paper, regarding Yu’s empirical electron theory of solid and molecule, (EET) and Cheng’s improved TFD theory as the guidance, by applying the calculation methods of plane valence electron structure and atom state ascertainment factor w , based on the research of Unary iron-carbon alloy, hybrid states of the atoms in binary alloy of austenite and martensite were investigated. For the definite state of atoms in alloy if exiting biphase interface and arranging by definite phase relationship, the value of bond length difference (BLD)ΔD and relative electron density differenceΔρshouble be both considered. The effect of this two factors is considered simultaneousely as that of atom state ascertainment factor w used in this paper. According to the“Bond-Length Difference Method”and the calculational method of relative electron density difference, VC++ language program has been completed to scan all the involved elements. Through the information obtained by running the program, valence electron structure、interface electron structures and hybrid state of the atoms in crystal units of the Fe-C-Mx-My alloyed austenite and the Fe-C-Mx-My alloyed martensite have been studied and determined.
     For studying Fe-C-Mx-My alloyed austenite, valence electron structure of the (111) plane of Fe-C alloyed austenite and the one of the (111) plane of Fe-C-Mx-My alloyed austenite are analyzed. The factor w is applied to ascertain the hybrid states of atoms in the crystal cell of alloying austenite. The results indicateded that the hybridization states of Fec、Fef、Cr and Ni atoms in Fe-C-Cr-Ni crystal cell are B14、B15(orB16)、A7(or A8 or A6) and B10(or B11) respectively; Those of Fec、Fef、Cu and Cr atoms in Fe-C-Cu-Cr crystal cell are B14、B16、B8(or B9 or B10) and A7(or A8 or A6) respectively; Those of Fec、Fef、Ni and Mn atoms in Fe-C-Ni-Mn crystal cell are B14、B15(orB16)、B8(or B10 or B11) and C11(or C12) respectively; Those of Fec、Fef、V and Mn atoms in Fe-C-V-Mn crystal cell are B15、B16(orB17)、C12(or C13 or C14) and C11 respectively; Those of Fec、Fef、Mo and Cr atoms in Fe-C-Mo-Cr crystal cell are B16、B16 (or B17 or B18)、C5(or C6) and A10(or A11) respectively.
     For studying the hybrid states of atoms of Fe-C-Mx-My alloyed martensite, according to the transformation from austenite to martensite, it exists the definite orientation relationship, i.e. (111)γ//(110)α. Valence electron structure of the (111) plane of Fe-C-Mx-My alloyed austenite and the one of the (110) plane of Fe-C-Mx-My alloyed martensite are analyzed. The factor w is applied to ascertain the hybrid state of atoms in the crystal cell of alloyed martensite. The results indicateded that the hybridization states of FeⅡ、FeⅢ、Cr and Ni atoms in Fe-C-Cr-Ni crystal cell are A15、A13、A14(or A15) and A14(or A15) respectively; Those of FeⅡ、FeⅢ、Cu and Cr atoms in Fe-C-Cu-Cr crystal cell are A15、A14、A16(or A17 or A18) and A15 respectively; Those of FeⅡ、FeⅢ、Ni and Mn atoms in Fe-C-Ni-Mn crystal cell are A14(or A13)、A11(or A12)、A11(or A10) and A5(or A6 or A7) respectively.
引文
[1]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-224
    [2]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993,275-300,316,427-482
    [3]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社.2002,i-iv, 30-114
    [4]刘志林.合金价电子结构与成分设计[M].吉林:吉林科学出版社.1990.
    [5] C.T.Sims. Superalloys 1984[M]. ed. by Gell et.al.,MIME,Warrendale,PA,1984,1st ed:399
    [6]张济山,崔华,胡壮麒.D电子合金理论及其在合金设计中的应用[J].材料科学与工程.1993,11(3):1-10
    [7]程开甲,程漱玉.TFD模型和余氏理论对材料设计的应用[M].自然科学进展.1993,3(5):417-432
    [8]程开甲、程漱玉.论材料科学的理论基础[J],自然科学进展,1996,6(1):1-7
    [9]张福成,郑炀增.锰铬奥氏体钢中合金元素及碳的短程有序分布[J].科学通报,1991,36(5):382-385
    [10] Zheng Yangzeng, Zhang Fucheng. Effect of heterogeneous distribution of C and alloying elements onγ/α'transformation in a Fe-Mn-Cr-C alloy[J]. Acta. Metallurgica sinica(series A),1991,4(6): 467-470
    [11] Tianfu Jing, Fucheng Zhang, Yangzeng Zheng. Wear resistence and work-hardening of 6-Mn-2Cr metastable austenitic steel[J]. Mechanical properties materials design conference. Boqun Wu volume editor, C-MRS international, Beijing China, 1990:629-634
    [12] Zhu Ruifu, Lu Yupeng, Zhang Fucheng. Valence electron structure of high manganese steel and its intrinsic property[J]. Chinese science bulletin, 1996, 41(15):1313-1316
    [13] Zhu Ruifu, Li Shitong, Wei Tao et.al. Dynamic observations on TEM in-situ tensile deformation[J]. Chinese science bulletin, 1996,41(23):2011-2015
    [14]朱瑞富,吕宇鹏,陈传忠等.Fe-C-Mn合金奥氏体的价电子结构分析[J].金属学报,1996,32(6):561-564
    [15]朱瑞富,李士同,刘玉先等.Fe-C-Mn合金中的C-Mn偏聚及其对相变和形变的影响[J].中国科学(E辑),1997,27(3):193-199
    [16]叶以富,尚玉侠,周香林等.球状石墨的晶核是“布基球”[J].科学通报,1996,41(19):1815-1817
    [17]屈庸博.材料物理与材料设计[J].吉林工业大学学报,1989,(1):138-142
    [18]张振宇,张百刚.马氏体的价电子结构与马氏体的强度及塑性[J].试验技术与试验机,1991,31(4):20-21
    [19]耿平.新型高强高韧钢的微观结构与强韧性研究[D].沈阳:东北大学,1997.
    [20]袁子洲,邱克强,武晓峰.对等同键数计算公式的认识[J].辽宁工学院学报1992,12(2):27-30
    [21]余瑞璜.α-Fe,γ-Fe和Fe4N的价电子和磁矩结构分析[J].金属学报. 1982,18(3):337-443
    [22]余瑞璜,张瑞林.奥氏体低温分解形成下贝氏体中的ε-Fe3C相的价电子结构分析[J].金属学报. 1982,18(4):444-450
    [23]张瑞林,余瑞璜. Fe-C马氏体价电子结构分析[J].金属学报. 1984,20(4):A279-A285
    [24]余瑞璜,刘志林. AⅠ型多元固溶体价电子结构的计算[J].金属科学与工艺. 1988,7(2):1-7
    [25]尹衍升,孙扬善等. Fe3Al金属间化合物的价电子结构分析[J].东南大学学报.1993,23(5):42-48
    [26]刘丽华,华中等. Fe-Cu固溶体价电子结构的研究[J].松辽学刊.2000,1:25-27,33
    [27]孙振国,于鹏恩.马氏体中Fe-C-Me晶胞原子杂化状态的确定[J].江苏科技大学学报(自然科学版),2008,22(1):30-33.
    [28]常国威,曹丽云.碳对Fe-C马氏体力学性能的影响[J].辽宁工学院学报. 1992,12(1):1-6
    [29]余瑞璜,张瑞林等.渗碳体价电子结构及其性质的分析[J].科学通报.1993,38(7):665-668
    [30]张振宇,王斌等. Mn、Cr的偏聚对回火转变的影响[J].金属热处理. 1993,8:10-13,18,35
    [31]杜洁海,张振宇等.合金价电子结构对回火转变的影响[J].吉林工业大学学报.1995,25(2):37-43
    [32] Sun Zhi-ping、Shen Baoluo、Wang Juni、Liu Haohuai、Yang Hongshan.Electron theory study on the effect of Mn on as-cast structure of Fe-C-Cr-Mn cast irons[J]. Journal of Harbin Institute of Technology(New Series).2008,15(5):643-647
    [33]刘志林,孙振国等.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展. 1998,8(2):150-160
    [34]李志林,刘志林等.合金相结构因子和界面结合因子的计算方法及其在合金设计中的应用[J].金属学报.1999,35(7):673-681
    [35] Li Wen, Yu Xiang-hui, Guan Zhen-zhong, Zhang Rui-lin, Yu Rui-huang. Electron theory of planar defects energy and positive temperature dependence of yield stress in TiAl[J]. The Chinese Journal of Nonferrous Metals, 1998, 8: 244?248.
    [36]李文,关振中,张瑞林,余瑞璜.间隙杂质对Ti-Al合金价电子结构及相变温度的影响[J].有色金属, 1998, 50(1): 84?89.
    [37] Li Wen, Zhang Rui-Lin, Yu Rui-huang. Analysis on valence electron structures of titanium aluminides[J]. Acta Physico-Chimica Sinica, 1999, 15(9): 824?829.
    [38]李文,钟声,关振中,张瑞林. Ti3Al氧化行为的电子理论研究[J].腐蚀科学与防护技术, 1998, 10(5): 9?13.
    [39]李培杰,陈岗,余瑞璜,贾均,李庆春,里豪森. Al-Si合金融体的价电子结构及其结构遗传[J].吉林大学自然科学学报, 1997, 3: 61?63.
    [40] Gao Ying-jun, Han Yong-jian, Zhao Miao, Wu Wei-ming. Electron structure and spinodaldecomposition reaction of Al-Zn solid solutions[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(5): 730?734.
    [41] Zhong Ya-ping, Gao Ying-jun, Liu Hui. Valence electronic structures of Al-Cu alloy in early aging condition[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(1): 55?59.
    [42] Min Xue-gang, Sun Yang-shan, Xue Feng, Du Wen-wen, Wu Deng-yun. Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg-Al-based alloys[J]. Materials Chemistry and Physics, 2002, 78: 88?93.
    [43]王庆松,秦海青,王娜,高英俊. Al-Mg-Si合金滑移面结合及位错运动机制[J].重庆工学院学报, 2006, 20(2): 52?56.
    [44]胡一丰、沈大华、邓文.A1—Mg—Si合金GP区强化作用的价电子结构分析[J].轻金属.2008,8:55-58
    [45]高倩、林成、曹力生、刘志林.Al—Mg—Si合金时效强化初期的价电子理论研究[J].兵器材料科学与工程.2007,30(4) :27-30
    [46]高英俊,莫其逢,王娜,王玉玲,黄创高. Zr对Al2Li合金晶粒细化作用的电子理论分析[J].材料工程增刊, 2006, 1: 210?213.
    [47] Zheng Yong, You Min, Xiong Wei-hao, Liu Wen-jun, Wang Sheng-xiang. Valence-electron structure and properties of main phases in Ti(C, N)-based cermets[J]. Materials Chemistry and Physics, 2003, 82: 877?881.
    [48] Shi Min, LIU Ning, Xu Yu-dong, Wang Can, Yuan Yu-peng, Majewski P. A valence electron structure criterion of ionic conductivity of Sr- and Mg-doped LaGaO3 ceramics[J]. J Mater Sci Technol, 2006, 22(2): 215?219.
    [49] Pang Lai-xue, Sun Kang-ning, Sun Jia-tao, Fan Run-hua, Ren shuai. Interface electron structure of Fe3Al/TiC composites[J]. Trans Nonferrous Met Soc China, 2006, 16: 294?298.
    [50]徐文武、邹正光、吴一.Mo改善TiC/Fe金属陶瓷界面润湿机理的价电子理论分析[J].硬质合金.2007,24(2) :70-73
    [51] Qian Cun-fu, Chen Xiu-fang, Yu Rui-huang, Geng Ping, Duan Zhan-qiang. Calculation of actinide metal cohesive energy[J]. Science in China (Series A), 1997, 27(1): 72?76.
    [52]张山纲.应用余氏经验电子理论计算马氏体开始转变温度Ms[J].材料热处理学报, 2004, 25(4): 24?29.
    [53]贾淑果、卞华康、刘平、李香丽、吴卷、郑茂盛.Cu-Cr合金固溶体的电子理论分析[J].兵器材料科学与工程.2008,31(5) :14-16
    [54]王奎雄.NiAl合金存在共价电子和晶格电子的直接证据[J].科学通报.1980,21:974-977
    [55]吕振家,王绍铿.科学通报[J].1981,26:220
    [56]万纾民.科学通报[J].1986,31(22):1698
    [57]程开甲等.第六届固体与分子经验电子理论及其在材料科学研究中的应用学术研讨会议论文集[D].吉林大学,山东工业大学.1994,715
    [58] Li Zhilin, Liu Zhilin, Liu Weidong. Valence electron structure of cementite phase and its interface and the tempering phenomenon [J]. Science in China (Series E). 2002,45(3):282-290
    [59] Li Zhilin, Liu Zhilin, Liu Weidong. Interface conjunction factors of the second particles in alloys and their effects [J]. Science in China (Series E). 2002,45(2):195-205
    [60] Li Zhilin, Xu Huibin, Gong Shengkai. Interface conjunction factors of thermal barrier coatings and the relationship between factors and composition [J]. Science in China (Series E). 2003,46(3):234-244
    [61]李志林,吴远启.粘结层中Cr对热障涂层界面结合因子的影响[J].中国有色金属学报.2004,14 (9):1477-1482
    [62] Li Zhilin, Liu Zhilin and Sun Zhenguo. Electron density of austenite/martensite biphase interface [J]. Chinese Science Bulletin, 1996, 41(5): 367-370
    [63]孙振国,李志林,刘志林.合金异相界面电子密度的计算[J],科学通报,1995,40(24):2219-2222
    [64] Sun Zhenguo,Liu Zhilin,Li zhilin. Ascertainment of the hybridization states of Fe atoms in austenite and martensite. Scince In China(Series E),1997,40(4):369-373.
    [65] W. J. Wrazej. Lattice spacing of retained austenite in iron-carbon Alloys [M]. Nature. 1949,163:212-213
    [66]余瑞璜,张瑞林,金冶.铁—碳、铁—氮系中几种固溶体的研究(1)[J].吉林大学自然科学学报,1984,59(1):51—59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700