B-Z化学振荡反应及其在苯胺类物质检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学振荡现象由来已久,有关化学振荡反应以及相关的非线性化学动力学更广泛领域的研究在近20年得到了人们愈来愈多的关注,B-Z化学振荡反应是目前最受分析工作者青睐的实验研究和理论分析的对象。本文利用锰催化的酒石酸-丙酮化学振荡体系的非平衡定态和规则振荡分别检测了对硝基苯胺以及邻、间、对苯二胺;并总结了几种苯胺类物质对锰催化的B-Z化学振荡体系的扰动规律。论文包括四个部分。
     第一部分:绪论
     详细介绍了B-Z化学振荡反应的类型及其发生的条件,简要阐述了利用化学振荡反应不同行为进行检测的原理,并综述了近几年来振荡反应在分析检测领域的应用。
     第二部分:利用酒石酸-丙酮有机双底物化学振荡体系的非平衡定态检测对硝基苯胺
     本文利用酒石酸-丙酮-Mn2+-KBrO3-H2SO4化学振荡体系的非平衡定态检测对硝基苯胺,以温度为控制参数优化检测条件,建立了检测对硝基苯胺的新方法。结果表明,当温度为33.5℃,反应体系的组成为3.5mL 0.06 mol·L~(-1)酒石酸(TA), 4.0mL 0.7 mol·L~(-1) H2SO4, 1.5mL 1.5×10~(-4) mol·L~(-1) MnSO4, 4.0mL 0.4 mol·L~(-1)丙酮(Act)及7.0mL 0.05 mol·L~(-1) KBrO3时,对硝基苯胺对体系扰动的灵敏度最高。当对硝基苯胺浓度在2.50×10-7~3.75×10-5 mol·L~(-1)范围内时,体系振幅的变化量与所加入对硝基苯胺浓度的负对数呈良好的线性关系,检测限为2.50×10-8 mol·L~(-1)。
     第三部分:苯胺及其衍生物对锰催化的B-Z化学振荡体系的扰动
     研究了苯胺及其衍生物对优化条件的锰(II)催化的B-Z化学振荡体系的扰动情况。结果表明,由对苯二胺引起的扰动最大,苯胺次之,扰动最小的为对硝基苯胺。同时对扰动机理进行了讨论,发现外加干扰物主要与体系中的Br2发生亲电取代反应,并且,苯胺类物质环上的电子云密度越大,就越容易发生亲电取代,引起振幅的变化就越大。
     第四部分:利用酒石酸-丙酮有机双底物化学振荡体系的规则振荡检测邻、间、对苯二胺
     提出了利用酒石酸-丙酮有机双底物化学振荡体系检测邻、间、对苯二胺的新方法。结果表明,邻、间、对苯二胺的浓度分别在5.00×10~(-7)~3.75×10~(-5) mol·L~(-1),1.00×10~(-5)~1.00×10~(-3) mol·L~(-1)和5.00×10-6~1.00×10~(-3) mol·L~(-1)范围内时,体系振幅的变化量与所加入邻、间、对苯二胺浓度的负对数呈良好的线性关系,相关系数分别为0.9992,0.9990和0.9989,最低检测限分别为2.50×10-8 mol·L~(-1),1.00×10-6 mol·L~(-1)和5.00×10~(-7) mol·L~(-1)。同时,对可能的扰动机理进行了讨论。
Oscillating chemical reaction has been of long standing, the extensive studies of which and nonlinear chemical dynamics related with this have attracted considerable attention of researchers in recent two decades. Furthermore, analysis operators pay more attention to B-Z oscillating chemical reaction, which is considered to be an optimum object of experimental study and theoretical analysis. This dissertation reports the determination of p-nitroaniline and o-, m-, p-phenylenediamine by using non-equilibrium stationary state and regular oscillation of tartrate-acetone double substrate oscillating system respectively, and summaries the perturbation regularity of aniline and some of its derivates on Mn(II) catalyzed B-Z oscillating system. It includes four parts.
     Part I: Introduction
     Classifications and occurrence conditions of B-Z oscillating chemical system are introduced in detail. Determination principles of different behaviors in chemical oscillation are described in brief, and their applications in analytical determination in recent years are also reviewed.
     Part II: Determination of p-nitroaniline by the tartrate-acetone-Mn2+-KBrO3- H2SO4 double organic substrate oscillating system using non-equilibrium stationary state
     A highly sensitive method is proposed for the determination of p-nitroaniline by using non-equilibrium stationary state of tartrate-acetone-Mn2+-KBrO3-H2SO4 double organic substrate oscillating system. Under the optimum conditions, temperature was chosen as a control parameter to design the bifurcation point. Results showed that the system consisting of 3.5mL 0.06 mol·L~(-1) tartrate, 4.0mL 0.7 mol·L~(-1) H_2SO_4, 1.5mL 1.5×10~(-4) mol·L~(-1) MnSO_4, 4.0mL 0.4 mol·L~(-1) acetone and 7.0mL 0.05 mol·L~(-1) KBrO3 was very sensitive to the surrounding at 33.5℃. A well linear relationship between the potential difference and the negative logarithm concentration of p-nitroaniline was obtained to be in the range of 2.50×10~(-7)~3.75×10~(-5) mol·L~(-1) with a lower detection limit of 2.50×10~(-8) mol·L~(-1).
     Part III: Perturbation of aniline and its derivates on Mn(II)-catalyzed B-Z oscillating chemical system
     The perturbation of aniline and three its derivates on B-Z oscillating chemical system catalyzed by Mn(II) was investigated. It was found that disturbance caused by p-phenylenediamine was the biggest one, the next was aniline and that of p-nitroaniline was the smallest among them. Perturbation mechanism was discussed and the results indicated that the analytes mainly took place electrophilic substitution reaction with Br2 in the system. Furthermore, the higher the electron density of ring of aniline compounds, the bigger change in oscillating amplitude was.
     Part IV: Determination of o-, m-, p-phenylenediamine by using regular oscillation of tartrate-acetone double organic substrate oscillating system
     A new method for the determination of o-, m-, p-phenylenediamine is established that is based on the perturbation of tartrate-acetone-Mn2+-KBrO3-H2SO4 double organic substrate oscillating system with different amounts of them. Results showed that a well linear relationship was existed between the potential difference and the negative logarithm concentration of o-, m-, p-phenylenediamine in the range of 5.00×10~(-7)~3.75×10~(-5) mol·L~(-1), 1.00×10~(-5)~1.00×10~(-3) mol·L~(-1) and 5.00×10~(-6) ~1.00×10~(-3) mol·L~(-1), with the correlation coefficients were 0.9992, 0.9990 and 0.9989, respectively. The detection limit of 2.50×10~(-8) mol·L~(-1), 1.00×10~(-6) mol·L~(-1) and 5.00×10~(-7) mol·L~(-1) were also obtained. At the same time, a possible perturbation mechanism was discussed in brief.
引文
[1]辛厚文.非线性化学[M].合肥:中国科学技术大学出版社, 1999.
    [2] Prigogine I, Structure, dissipation and life. Communtion presented at the first international conference“The oretical physics and biology”[M]. Versailles: North Holl and Pub., 1969.
    [3]李祥云.化学振荡反应研究简史[J].化学通报, 1986, 11: 56-59.
    [4]李如生.非平衡非线性现象和涨落化学[J].化学通报, 1984, 5: 41-47.
    [5] Maya G, Lalttha P V, Ramaswamy R. The oscillating Belousov-Zhabotinskii reaction with flavors in batch system using aqueous-DMF mixed medium[J]. Can. J. Chem., 1994, 72:1537-1540.
    [6] Stoupine D Y, Gusev Y K, Lachkova D V. Generation of an oscillating chemical reaction in a heterogeneous system by the oxidation of the alkaline solution of luminol with sodium ferrate in the presence of copper ions[J]. Russ. Chem. Bull., 2001, 50: 159-160.
    [7] Peter S, Katarina K, Lubica A. Oxygen production in the oscillatory Bray-Liebhafsky reaction[J]. J. Phys. Chem., 2000, 104(17): 3958-3963.
    [8] Rinaldo C, Barbara Mo. Inhibition of chemical oscillations by bromide ion in the Briggs-Rauscher reaction[J]. Int. J. Chem. Kinet., 1998, 30: 641-646.
    [9] Noyes R M. Mechanism of some chemical oscillators[J]. J. Phys. Chem., 1989, 93: 7394-7398.
    [10] Baltazer D, Aguda, Raima L. Sustained oscillations and instability in a detailed mechanism of the Peroxidase-Oxidase reaction[J]. J. Am. Chem. Soc., 1990, 112: 2167-2174.
    [11]许海涵.化学振荡[J].化学通报, 1991, 1: 26-31.
    [12] Song J M, Xu J D, Ni S S. Oscillating reaction involving a copper complex with a 14-membered tetraaza macrocyclic legend BrO3--CH2(COOH)2-H2SO4 system[J]. J. Chem. Phys., 1994, 7: 192-195.
    [13]董小梅,刘剑波,徐功骅. B-Z振荡反应[J].大学化学, 1996, 11(2): 35-37.
    [14]许志强,倪诗圣,徐济德. 11,12,13,-三甲基-1,4,7,10-四氮杂十三环-10,13,-二烯-镍(II)配合物催化的新型振荡化学反应[J].化学学报, 1992, 50: 734-739.
    [15]许志强,倪诗圣,徐济德,田玉鹏.四氮杂大环四烯镍配合物[Ni(TIM)]X催化BrO3-氧化有机底物的振荡反应[J].化学学报, 1992, 50: 1085-1090.
    [16]谢复新,李胜利,许志强,吴敏,倪诗圣. NaBrO3-Pyr[Ni(DTH)](Cl4)2-H2SO4体系化学振荡研究[J].中国科技大学学报, 1998, 28(3): 368-372.
    [17] Zhao L, Hu G L, Xie F X, Xu Z Q, Ni S S. A new chemical oscillator with a macorcyclic copper (II) complex as the catalyst and malic acid as the substrate [J]. Chin. Chem. Lett., 1996, 7(6): 579-580.
    [18]许志强,谢复新,杨光,倪诗圣.大环四烯镍催化溴酸氧化丙酮酸的振荡化学反应[J].无机化学学报, 1994, 10(1): 75-79.
    [19] Li H X, Jin R H, Dai W L, et al. Dual-frequence Oscillations induced by acidity in Belousov-Zhabotinskii reactions with aldosugars as substrates[J]. Chem. Phys. Lett., 1997, 274: 41-46.
    [20] Orbán M, Koros E, Noyes R M. Chemical oscillations during the uncatalyzed reaction of aromatic compounds with bromate[J]. J. Phys. Chem., 1979, 93: 3056-3057.
    [21]唐宇虹,刘铨良,胡照林,侯印兰.邻氨基苯甲酸BZ反应体系中的振荡与混沌I. CSTR实验研究和非线性动力学分析[J].化学物理学报, 1994, 7(4): 372-379.
    [22]唐宇虹,刘铨良,胡照林,侯印兰.邻氨基苯甲酸BZ反应体系中的振荡与混沌II.模型与数值模拟[J].化学物理学报, 1994, 7(5): 480-486.
    [23]唐宇虹,刘铨良,侯印兰.对氨基苯甲酸BZ反应体系分区振荡行为的研究[J].物理化学学报, 1994, 10(11): 1031-1034.
    [24]高庆宇,李保民,孙康,等.亚氯酸盐、硫脲反应体系的非线性动力学[J].物理化学学报, 2001, 17(3): 257-260.
    [25]王舜,林娟娟,黄振炎,等.高碘酸盐-硫脲-硫酸反应体系的非线性动力学[J].物理化学学报, 2002, 18(3): 264-267.
    [26]李和兴,许海涵. B-Z类化学振荡反应研究的非催化化学振荡反应[J].化学世界, 1989, 8: 387-380.
    [27]王明辉,李和兴.金属离子对没食子酸(GA)-BZ非催化振荡反应的影响[J].化学研究与应用, 1999, 11(3): 254-258.
    [28]高执棣,刘君利,韩德刚.间二苯酚-KBrO3-H2SO4体系化学振荡的研究[J].物理化学学报, 1993, 9(2): 218-223.
    [29]陶庭先,吴之转.乳酸-溴酸钾-硫酸锰-硫酸-丙酮体系的B-Z振荡反应[J].物理化学学报, 1996, 12(7): 664-667.
    [30] Wang J, Yang S T, Cai R X, Lin Z X, Liu Z H. A new method for determination of uric acid by the lactic acid-acetone-BrO_3~--Mn~(2+)-H_2SO_4 oscillating reaction[J]. Talanta, 2005, 65(3): 799-805.
    [31]杨波,安从俊,郑丹,丁宗洲. NO_2-对乳酸-丙酮-BrO_3--Mn~(2+)-H_2SO_4化学振荡反应的影响[J].无机化学学报, 2002, 18(9): 874-878.
    [32]陶庭先.酒石酸-溴酸钾-硫酸锰-硫酸-丙酮体系的振荡反应[J].安徽师大学报, 1997, 20(3): 291-294.
    [33] Gao J Z, Liu J, Ren J, Niu X L, Zhang Y Y, Yang W. Determination of p-nitroaniline by the tartrate-acetone-Mn~(2+)-KBrO_3~-H_2SO_4 double organic substrate oscillating system using non-equilibrium stationary state[J]. Cen. Eur. J. Chem., 2009, 7(3): 298-302.
    [34] Gao J Z, Ren J, Yang W, Liu X H, Yang H. Determination of caffeine using oscillation chemical reaction in a CSTR[J]. J. Pharm. Biomed. Anal., 2003, 32: 393-400.
    [35]李和兴,倪丽华,刘波,等.木糖-BZ体系化学振荡反应的研究[J].上海师范大学学报, 1996, 25(3): 60-66.
    [36]傅献彩.大学化学[M].北京:高等教育出版社,第一版, 1999, 99-127.
    [37]万宏文,詹正坤.物理化学[M].北京:高等教育出版社,第一版, 2002, 160-161.
    [38]薛万华,杨宏秀.谈谈热力学[J].化学通报, 2000, 63(3): 55-58.
    [39]湛恳华,沈小峰.普里高津与耗散结构理论[M].陕西科学出版社, 1982, 79-86.
    [40]李如生.非平衡态热力学和耗散结构[M].清华大学出版社, 1986, 196-207.
    [41] Tikhonova L P, Zakrevskaya L N, Yasimirskii K B. Catalytic determination of ruthenium based on an oscillating chemical reaction[J]. J. Anal. Chem., 1978, 33: 1991-1998.
    [42]梁逸曾,俞汝勤.化学振荡反应用于分析测定-测定铊及汞离子的BZ反应体系[J].高等学校化学学报, 1988, 9: 881-885.
    [43] Echols, Mary K, Carrol L, Tulian F T. Flow injection study of the Belousov-Zhabotinskii reaction[J]. Anal. Proc. Art., 1995, 32: 3-5.
    [44] Yatsimirskii K B, Strizhak P E, Ivaschenko T S. Potential of chaotic chemical systems in nanotrace analysis based on the Belousov-Zhabotinskii reaction (BrO?3-malonic acid-ferroin), determination of manganes(II)[J]. Talanta, 1993, 40(8): 1227-1232.
    [45] Jimenez-Prieto R, Silva M, Perez-Bendito D. Analyte pulse perturbation technique: a tool for analytical determination in far-from-equilibrium dynamic systems[J]. Anal. Chem., 1995, 67: 729-734.
    [46] Epstein I R. Complex dynamical behavior in "simple" chemical systems[J]. J. Phys. Chem., 1984, 88: 187-198.
    [47] Jiang M, Li Y L, Zhou X Y, Zhao Z F, Wang J L, Mo J W. Kinetic determination of an hexacyanoferrates by their inhibition of an oscillating chemical reaction[J]. Anal. Chim. Acta, 1990, 236: 411-416.
    [48] Strizhak P E, Khavrus V O. Determination of gases (NO, CO, Cl_2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reaction [J]. Talanta, 2000, 51: 935-947.
    [49] Gao J Z, Chen H, Dai H X. Improved sensitivity for transition metal ions by use of sulfide in the Belousov-Zhabotinskii oscillating reaction[J]. Anal. Chim. Acta, 2006, 571: 150-155.
    [50]范少华,安从俊,庄林,甘南琴,林智信.维生素B1对B-Z振荡反应的影响及反应动力学[J].物理化学学报, 1999, 15(2): 178-181.
    [51] Gao J Z, Yang H, Liu X H, Ren J, Lu X Q, Hou J G., Kang J W. Kineticdetermination of ascorbic acid by the B-Z oscillating chemical system[J]. Talanta, 2001, 55: 99-107.
    [52] Zhang K, Ma W H, Cai R X, Lin Z X, Gan N Q. Determination of riboflavin by the perturbation of active oxygen on a chemical oscillating reaction[J]. Anal. Chim. Acta, 2000, 413: 115-123.
    [53] Jimenez-Prieto R, Silva M, Perez-Bendito D. Application of oscillating reaction based determinations to the analysis of real samples[J]. Analyst, 1997, 122: 287-292.
    [54] Gao J Z, Qu J, Yang W, Wei X X, Dai H X, Lv D Y, Ren J, Chen H. Kinetic determination of tryptophan by using the B-Z oscillating chemical system[J]. Amino Acids, 2009, 36(3): 391-397.
    [55] Gao J Z, Yang H, Liu X H, Ren J, Li Q Z, Kang J W. Determinations of glutamic acid by an oscillating chemical reaction use the analyte pulse perturbation technique[J]. Talanta, 2002, 57: 105-114.
    [56] Toledo R, Khavrus V O, Strizhak P E. Potential of the analyte pulse perturbation technique for the determination of polyphenols based on the Belousov-Zhabotinskii reaction[J]. Analyst, 2000, 125: 2118-2124.
    [57] Gao J Z, Ren J, Yang W, Liu X H, Yang H, Li Q Z, Deng H L. Kinetic determination of hydroquinone by a Belousov-Zhabotinskii oscillating chemical reaction[J]. J. Electroanal. Chem., 2002, 520: 157-161.
    [58]高锦章,索南,杨武,王蕾,赵国虎,孙看军.海洛因对别洛索夫-扎鲍京斯基振荡化学反应的影响及其分析应用[J].分析化学, 2004, 32(5): 611-614.
    [59] Gao J Z, Wei X X, Yang W, Lv D Y, Qu J, Chen H, Dai H X. Determination of 1-naphthylamine using oscillating chemical reaction[J]. J. Hazard. Mater., 2007, 144: 67-72.
    [60] Gao J Z, Dai H X, Yang W, Chen H, Lv D Y, Ren J, Wang L. Determination of furfural by oscillating chemical reaction using an analyte pulse perturbation technique[J]. Anal. Bioanal. Chem., 2006, 384: 1438-1443.
    [61]高锦章,曲婕,魏晓霞,郭淼,任杰,杨武.青霉素对乳酸-丙酮-溴酸钾-硫酸锰-硫酸开放化学振荡体系的扰动[J].分析化学, 2008, 36(6): 735-739.
    [62]曲婕,高锦章,郭淼,魏晓霞,任杰.针剂头孢曲松钠对B-Z化学振荡反应的影响及其分析检测[J].西北师范大学学报(自然科学版), 2007, 43(6): 55-59.
    [63] Dong Y J, Gai K, Gong X X. Kinetic determination of gibberellic acid by the B-Z oscillating chemical system[J]. J. Chin. Chem. Soc., 2004, 51: 7-11.
    [64]宋浩,李艳妮,陈兰等.实验控制Belousov-Zhabotinsky-CSTR[J].化学学报, 1999, 57(10): 1047-1054.
    [65] Strizhak P E, Didenko O Z, Ivashchenko T S. Determination of traces of thallium using the transient chaotic regime in the Belousov-Zhabotinskii oscillating chemical reaction[J]. Anal. Chim. Acta, 2001, 428: 15-21.
    [66] Vukojevic V B, Pejic N D, Stanisavljev D R, Amid S R, Kolar-Anic L Z. Determination of Cl-, Br-, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction[J]. Analyst, 1999, 124:147-152.
    [67] Pejic N D, Kolar-Anic L Z, Anic S R, Stanisavljev D R. Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique[J]. J. Pharm. Biomed. Anal., 2006, 41: 610-615.
    [68] Pejic N D, Blagojevic S M, Anic S R, Vukojevic V B, Mijatovic M D, ciric J S, Markovic Z S, Markovic S D, Kolar-Anic L Z. Kinetic determination of morphine by means of Bray-Liebhafsky oscillatory reaction system using analyte pulse perturbation technique[J]. Anal. Chim. Acta, 2007, 582: 367-374.
    [69]郭淼,高锦章,王杰,陈晓东,王文斌,任杰,杨武.利用B-Z体系非平衡定态检测对氨基苯磺酰胺[J].西北师范大学学报(自然科学版), 2008, 44(6): 62-65.
    [70]高锦章,陈晓东,任杰,张莹莹,魏晓霞,郭淼,王文斌,王杰,杨武.在非平衡稳定态的B-Z体系中检测苏丹红I[J].分析化学, 2008, 36(10): 1354-1358.
    [1] Jimenez-Prieto R, Silva M, Perez-Bendito D. Approaching the use of oscillating reaction for analytical monitoring[J]. Analyst, 1998, 123: 1R-8R.
    [2] Gao J Z. Application of oscillating chemical reaction to analytical chemistry: recent developments[J]. Pak. J. Biol. Sci., 2005, 8: 512-519.
    [3] Epstein I R. Complex dynamical behavior in "simple" chemical systems[J]. J. Phys. Chem., 1984, 88: 187-198.
    [4] Jimenez-Prieto R, Silva M, Perez-Bendito D. Analyte pulse perturbation technique: A tool for analytical determinations in far-from-equilibrium dynamic systems[J]. Anal. Chem., 1995, 67: 729-734.
    [5] Strizhak P E, Didenko O Z, Ivashchenko T S. Determination of traces of thallium using the transient chaotic regime in the Belousov-Zhabotinskii oscillating chemical reaction[J]. Anal. Chim. Acta, 2001, 428: 15-21.
    [6] Gao J Z, Chen H, Dai H X, Lv D Y, Ren J, Wang L, Yang W. Improved sensitivity for some metal ions by use of sulfide in the Belousov- Zhabotinskii oscillating reaction[J]. Anal. Chim. Acta, 2006, 571(1): 150-155.
    [7] Vukojevic V B, Pejic N D, Stanisavljev D R, Anic S R, Kolar-Anic L Z. Determination of Cl-, Br-, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction[J]. Analyst, 1999, 124:147-152.
    [8] Pejic N D, Kolar-Anic L Z, Anic S R, Stanisavljev D R. Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique[J]. J. Pharm. Biomed. Anal., 2006, 41: 610-615.
    [9] Pejic N D, Blagojevic S M, Anic S R, Vukojevic V B, Mijatovic M D, ciric J S, Markovic Z S, Markovic S D, Kolar-Anic L Z. Kinetic determination of morphine by means of Bray-Liebhafsky oscillatory reaction system using analyte pulse perturbation technique[J]. Anal. Chim. Acta, 2007, 582: 367-374.
    [10] Tao T X. Oscillating behavior of the system: tartrate-acetone-Mn2+-KBrO3-H_2SO_4 [J]. J. Anhui Normal University, 1997, 20(3): 291-294.
    [11] Niazi A, Ghasemi J, Yazdanipour A. Simultaneous spectrophotometric determination of nitroaniline isomers after cloud point extraction by using least-squares support vector machines[J]. Spectrochim. Acta, 2007, 68(3): 523-530.
    [12] Guo X F, Lv J, Zhang W D, Wang Q J, He P G., Fang Y Z. Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection[J]. Talanta, 2006, 69: 121-125.
    [13] Zhao F Q, Liu L Q, Xiao F, Li J W, Yan R, Fan S S, Zeng B Z. Sensitive voltammetric response of p-nitroaniline on single-wall carbon nanotube-ionic liquid gel modified glassy carbon electrodes[J]. Electroanal, 2007, 19(13): 1387-1393.
    [1] Tikhonova L P, Zakrevskaya L N, Yatsimirskii K B. Catalytic determination of ruthenium based on oscillating reaction[J]. J. Anal. Chem., 1978, 33: 1991-1998.
    [2] Yatsimirskii K B, Strizhak P E, Ivaschenko T S. Potential of chaotic chemical systems in nanotrace analysis based on the Belousov-Zhabotinskii reaction (BrO3?-malonic acid-ferroin), determination of manganes (II)[J]. Talanta, 1993, 40(8): 1227-1232.
    [3] Jimenez-Prieto R, Silva M, Perez-Bendito D. Analyte pulse perturbation technique: A tool for analytical determination in far-from-equilibrium dynamic systems[J]. Anal. Chem., 1995, 67: 729-734.
    [4]安从俊,方贤安,刘义,林智信,蔡汝秀.碘离子对B-Z振荡反应的影响及其应用[J].武汉大学学报, 1993, 4: 56-60.
    [5] Gao J Z, Liu X H, Yang H, Ma Y J, Lu X Q. The effect of fluoride on B-Z oscillating chemical system[J]. Analyst, 2001, 29(11): 1318-1321.
    [6] Strizhak P E, Khavrus V O. Determination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov-Zhabotinskii oscillating chemical reaction [J]. Talanta, 2000, 51: 935-947.
    [7] Wang J, Yang S T, Cai R X, Lin Z X, Liu Z H. A new method for determination of uric acid by the lactic acid-acetone-BrO3--Mn2+-H2SO4 oscillating reaction[J]. Talanta, 2005, 65: 799-805.
    [8] Gao J Z, Yang H, Liu X H, Ren J, Lu X Q, Hou J G, Kang J W. Kinetic determination of ascorbic acid by the BZ oscillating chemical system[J]. Talanta, 2001, 55: 99-107.
    [9]沈振文,蒋萍初,李和兴,金艳,徐元昌.化学振荡用于临床检验的探索[J].上海师范大学学报(自然科学版), 1994, 23: 57-61.
    [10]任杰,杨武,刘秀辉,杨华,李奇志,高锦章.尿液对化学振荡的扰动作用[J].西北师范大学学报(自然科学版), 2002, 38(1): 55-57.
    [11] Gao J Z. Application of oscillating chemical reaction to analytical chemistry:recent developments[J]. Pak. J. Biol. Sci., 2005, 8(4): 512-519.
    [12] Field R J, Koros E, Noyes R M. Oscillations in chemical systems. II. Thorough analysis of temporal oscillations[J]. J. Am. Chem. Soc., 1972, 94(25): 8649-8664.
    [1]彭超盼,邓穗兴,吴玉銮.测定染发剂中苯二胺的气相色谱法[J].分析测试学报, 2000, 19(1): 79-80.
    [2]查红平,董瑞斌.农药废水中邻苯二胺的分光光度法测定[J].干旱环境检测, 2007, 21(3): 132-135.
    [3]郑志方.高效液相色谱法测定染发剂中对苯二胺及某些酚类物质的含量[J].香料香精化妆品, 2000, 2: 11-14.
    [4]李奇志,刘秀辉,任杰,杨华,杨武,高锦章.二苯胺磺酸钠对B-Z振荡反应的影响[J].西北师范大学学报, 2002, 38(1): 51-54.
    [5]高锦章,索南,杨武,王蕾,赵国虎,孙看军.海洛因对别洛索夫-扎鲍京斯基振荡化学反应的影响及其分析应用[J].分析化学, 2004, 32(5): 611-614.
    [6] Gao J Z, Wei X X, Yang W, Lv D Y, Qu J, Chen H, Dai H X. Determination of 1-Naphthylamine using oscillating chemical reaction[J]. J. Hazard. Mater., 2007, 144: 67-72.
    [7]安从俊,方贤安,刘义,林智信,蔡汝秀.碘离子对B-Z振荡反应的影响及其应用[J].武汉大学学报, 1993, 4: 56-60.
    [8]刘秀辉,杨华,高锦章,马永均,卢小泉.氟对别洛索夫-扎鲍京斯基振荡反应的影响[J].分析化学, 2001, 29(11):1318-1321.
    [9] Gao J Z, Chen H, Dai H X, Lv D Y, Ren J, Wang L, Yang W. Improved sensitivity for transition metal ions by use of sulfide in the Belousov-Zhabotinskii oscillating reaction[J]. Anal. Chim. Acta, 2006, 571: 150-155.
    [10]范少华,安从俊,庄林,甘南琴,林智信.维生素B1对BZ振荡反应的影响及反应动力学[J].物理化学学报, 1999, 15(2): 178-181.
    [11] Gao J Z, Yang H, Liu X H, Ren J, Lu X Q, Hou J G., Kang J W. Kinetic determination of ascorbic acid by the B-Z oscillating chemical system[J]. Talanta, 2001, 55(1): 99-107.
    [12] Wang J, Yang S T, Cai R X, Lin Z X, Liu Z H. A new method for determinationof uric acid by the lactic acid-acetone-BrO_3~--Mn~(2+)~-H_2SO_4 oscillating reaction[J]. Talanta, 2005, 65(3): 799-805.
    [13]杨波,安从俊,郑丹,丁宗洲. NO_2~-对乳酸-丙酮-BrO_3~--Mn~(2+)~-H_2SO_4化学振荡反应的影响[J].无机化学学报, 2002, 18(9): 874-878.
    [14] Gao J Z, Ren J, Yang W, Liu X H, Yang H. Determination of caffeine using oscillation chemical reaction in a CSTR[J]. J. Pharm. Biomed. Anal., 2003, 32(3): 393-400.
    [15]陶庭先.酒石酸-溴酸钾-硫酸锰-硫酸-丙酮体系的振荡反应[J].安徽师大学报, 1997, 20(3): 291-294.
    [16]朴元哲,王桂芬,王轶.痕量间硝基苯胺、邻氯苯胺、邻苯二胺的伏安法测定[J].延边大学学报, 1999, 25(3): 174-176.
    [17] Field R J, Koros E, Noyes R M. Oscillations in chemical systems. II. thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system[J]. J. Am. Chem. Soc., 1972, 94(25): 8649-8664.
    [18]安从俊,庄林,刘义,林智信.乳酸-丙酮-BrO_3~--Mn~(2+)~-H_2SO_4化学振荡体系动力学研究[J].化学学报, 1997, 55: 259-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700