双丙酮-D-半乳糖手性聚合物纳米球的合成及其手性拆分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用6-O-p-vinylbenzyl-1,2:3,4-Di-O-isopropylidene-D-galactopyranose (VBPG)为单体:(1)通过RAFT的细乳液聚合制备了不同交联程度的手性纳米粒子P(VBPG);(2)采用ATRP法和“click”化学相结合的方法把手性P(VBPG)接枝到二氧化硅表面,得到手性杂化二氧化硅纳米粒子,并研究了所得到的这两种手性纳米粒子的手性拆分等相关性能。
     主要研究内容和结果如下:
     (1)选用手性的VBPG为单体,二乙烯基苯(DVB)为交联剂,偶氮二异丁腈(AIBN)为引发剂,P(VBPG)(Mn,GPC = 6200 g/mol, Mw/Mn = 1.12)为Macro-RAFT试剂,甲苯为溶剂,正十六烷(HD)为助表面活性剂,十二烷基苯磺酸钠为乳化剂进行RAFT细乳液聚合。首先在无交联剂的情况下,研究了VBPG的RAFT细乳液聚合动力学,发现所得到的P(VBPG)分子量随转化率的提高而线性增长,且聚合物分散性指数较小(PDI = 1.12~1.50),符合“活性”/可控自由基聚合特征。在交联剂存在下,研究了交联剂用量对所得到的交联P(VBPG)纳米粒子性能的影响。结果表明:纳米粒子的粒径(51-130 nm)随交联剂用量的增加呈现先增大后减小的变化趋势。用阿拉伯糖和醇氨等外消旋化合物的手性拆分实验发现:该纳米粒子不但有较好的手性拆分能力,而且还可以重复使用。
     (2)以功能性的2-溴异丁酸-3-炔丁酯(BEiB)为引发剂,采用ATRP法首先合成了三种含末端炔基不同链长的手性聚合链P(VBPG)。然后,使用“click”化学方法成功地将该聚合链接枝到含有叠氮的二氧化硅的表面,并考察了三种不同链长二氧化硅有机/无机杂化纳米粒子对酒石酸和醇胺等外消旋体手性拆分实验。发现该纳米粒子同样具有很好的手性拆分性能。最后考察了该手性杂化粒子在手性柱中作固定相进行HPLC手性拆分,实验发现该杂化粒子作为固定相能够对外削旋扁桃酸达到基线分离。
In this thesis, 6-O-p-vinylbenzyl-1,2:3,4-Di-O-isopropylidene-D-galactopyranose (VBPG) was selected as the monomer: (1) various cross-linked chiral nanoparticles were prepared by RAFT miniemulsion polymerization with different amounts of cross-linker, and (2) grafting chiral P(VBPG) chains to the silica surface by the combination ATRP and "click" chemistry method, to obtain chiral hybrid silica nanoparticles. And then studied the chiral separation and other related properties of the two kinds of nanoparticles.
     The results were shown as follows:
     1. VBPG was selected as the monomer, divinyl benzene (DVB) as the cross-linker if used, 2,2'-azobisisobutyronitrile (AIBN) as the initiator, P(VBPG) (Mn,GPC = 6200 g/mol, Mw/Mn = 1.12) as the Macro-RAFT agent, n-hexadecane (HD) as the co-emulsifier, toluene as the solvent, sodium dodecyl benzene sulfonate as the emulsifier for the RAFT miniemulsion polymerization. Firstly, the kinetics of RAFT miniemulsion polymerization was studied without cross-linker. The results showed P(VBPG) molecular weight increased with conversion and the polydispersity index kept narrow (PDI = 1.12-1.50), indicating a“living”/control polymerization process. Secondly, effects of the amount of the cross-linker on the properties of the cross-linked nanoparticles were studied. The results showed that the diameter of the obtained nanoparticles increased first and then decreased with the amount of the cross-linker in the range of 51-130 nm. Lastly, chiral separation of the nanoparticles for D,L-arabinose, (±)-3-amino-1,2-propanediol was investigated. It was found that the chiral nanoparticles not only had good chiral separation ability but also could be reused.
     2. Three chiral P(VBPG)s with different molecular weights containing alkynyl end group were obtained using 2-bromo-isobutyrate-3-butyl acetylene (BEiB) as functional initiator via ATRP method. Then, the P(VBPG) chains were grafted onto the surfaces of silica nanoparticles with azide group via the "click" chemistry to prepare the chiral hybrid naoparticles. The ability of enantioselective recognition of the three organic/inorganic silica hybrid nanoparticles for tartaric acid and (±)-3-amino-1,2-propanediol was investigated. It was found that hybrid nanoparticles had good chiral separation ability. Finally, we investigated the chiral hybrid nanoparticles as the chiral stationary phases (CSPs) for high-performance liquid chromatography, it was found that the chiral hybrid nanoparticles in chromatography column as the fixity can reach the baseline separation of Mandelic Acid.
引文
1. Maier, N. M.; Franco, P.; Lindner, W. Speparation of enantiomers:needs, challenges, perspectives. J. Chrommatogr A. 2001, 906, 3-33.
    2. Gübitz,G.; Schmid, M. G. Chiral Separations—Methods and Protocols. Angew. Chem. Int. Ed. 2004, 43, 4251-4253.
    3.黄蓓,杨立荣,吴坚平.手性拆分技术的工业应用.化工进展, 2002, 21(6), 375-380.
    4.任国宾,詹予忠,郭士岭.手性拆分技术进展.河南化工, 2002, 1, 1-3.
    5. Rekoske, J. E. Chiral Separations. January, 2001, 47, 1-4.
    6. Ward, T. J.; Baker, B. A. Chiral Separations. Anal. Chem. 2008, 80, 4363–4372.
    7. Grandeury, A.; Condamine, E.; Hilfert, L.; Gouhier, G.; Petit, S.; Coquerel, G. Chiral Discrimination in Host?Guest Supramolecular Complexes. Understanding Enantioselectivity and Solid Solution Behaviors by Using Spectroscopic Methods and Chemical Sensors. J. Phys. Chem. B, 2007, 111, 7017-7026.
    8. Alain, B. Chiral Recognition Mechanisms. Anal. Chem. 2006, 78 (7), 2093-2099.
    9. Dalgliesh, C. E. The optical resolution of aromatio amino-acids on paper. Chromatogrpahy. J Chem Soc, 1952, 137, 3940-3942.
    10. Feibush, B.; Woolley, C. L.; Mani, V. Separation of chiral silicon compounds using permethylated .alpha.-, .beta.-, and .gamma.-cyclodextrin capillary GC columns. Anal. Chem., 1993, 65 (9), 1130–1133.
    11. Kibayashi, C.; Aoyagi, S.; Wang, T. C.; Saito, K.; Daly, J. W.; Spande. T. F. Determination of Absolute Stereochemistry and an Alternative Synthesis of Homopumiliotoxin 223G: Identification on Chiral GC Columns with the Natural Alkaloid. J. Nat. Prod., 2000, 63 (8), 1157–1159.
    12. Schurig, V. Chiral separations using gas chromatography. Trends Anal Chem, 2002, 21(9-10), 647-661.
    13. Schurig, V. Separation of enantiomers by gas chromatography. J Chromatogr A, 2001, 906, 275-299.
    14. Gübitz, G.; Schmid, M. G. Chiral Separation by Chromatographic and Electromigration Techniques. A Review. Biopharm. Drug Dispos. 2001, 22: 291–336.
    15. Vespalec, R.; Bo?ek, P. Chiral Separations in Capillary Electrophoresis. Chem. Rev. 2000, 100, 3715-3753.
    16. Gübitz, G.; Schmid, M. G. Chiral separation by capillary electromigration techniques. J Chromatogr A, 2008, 1204, 140–156.
    17. Li, B. L.; Zhang, Z. G.; Du, L.L.; Wang, W. Chiral resolutions of (9-anthryl)methoxyacetic acid and (9-anthryl)hydroxyacetic acid by capillary electrophoresis. Chirality, 2008, 20, 35-39.
    18. Bo?ek,P.; Vespalec, R.; Giese, R. W. Peer Reviewed: Selectivity in CE. Anal. Chem., 2000, 72 (17), 586–595.
    19. Mukhopadhyay, R. Product Review: CE: Moving away from specialists. Anal. Chem., 2006, 78 (7), 2109–2111.
    20. Phinney, K. W. Peer Reviewed: SFC of Drug Enantiomers. Anal. Chem., 2000, 72 (5), 204–211.
    21. Stringham, R. W.; Blackwell, J. A. Factors That Control Successful Entropically Driven Chiral Separations in SFC and HPLC. Anal. Chem., 1997, 69(7), 1414–1420.
    22. Zhang, Y. R.;Dai, J.; Wang-Iverson, D. B.; Tymiak, A. A.; Simulated Moving Columns Technique for Enantioselective Supercritical Fluid Chromatography. Chirality, 2007, 19, 683–692.
    23. Nakano, M.; Kawahara, S. High-Performace liquid chromatographic method of simultaneous determination of enantiomers of 5-dimethylsulphamoyl-6, 7-dichloro-2, 3-dihydrobenzofuran-2-carboxylic acid and its N-monodemehtyl metabolite in monkey plasma and urine after chiral derivatization. J Chromatogr Biomed Appl, 1991, 564(l), 235-241.
    24. Eisenberg, J. E.; Patterson, R. W.; Kahn, G. C.High-performance liquid chromatographic method for the simultaneous determination of the enantiomers of carvedilol and its O-desmethyl metabolite in human plasma after chiralderivatization. J Chromatogr B Biomed Sci Appl, 1989, 493, 105-115.
    25. Bhushan, R.; Tanwar, S. Reversed-phase high-performance liquid chromatographic enantioresolution of six-blockers using dinitrophenyl-L-Pro-N-hydroxysuccinimide ester, N-succinimidyl-(S)-2-(6-methoxynaphth-2-yl) propionate and twelve variants of Sanger’s reagent as chiral derivatizing reagents. Biomed. Chromatogr. 2009, 23, 1291–1299.
    26. Lough, W. J. Chiral liquid chromatrography. New York: Blackie, 1989, 26, 83.
    27. Beeson, M. D.; Vigh, G. Examination of the retention behavior of underivatized Profen enantiomers on cyclodextrin silica stationary phases. J Chromatogr, 1993, 634, 197-204.
    28. Haginaka, J.; Wakai, J. Beta-cyclodextrin bonded silica for direct injection analysis of drug enantiomers in serum by liquld chromatography. Anal Chem. 1990, 62(10), 997-1000.
    29. Steveson, D. Wilson, I. D. Recent advances in chiral separations. New York: Plenun Press, 1990: 65.
    30. Ahuja, S. Chiral separations by liquid chromatography. Washington D C: ACS, 1991: 7.
    31. Lough, W. J. Chiral liquid chromatogaphy. NewYork: Blackie, 1989, 26: 83.
    32. Yashima, E.; Yamamoto, C.; Okamoto, Y. Polysaccharide-based chiral LC columns. Synlett. 1998, 344–360.
    33. Zhang, T.; Kientzy, C.; Franco, P.; Ohnishi, A.; Kagamihara, Y.; Kurosawa, H. Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A, 2005, 1075, 65-75.
    34. The chromatographic separation of enantiomers through nanoscale Design. Raquel Sanchoab and Cristina Minguillón. Chem. Soc. Rev., 2009, 38, 797–805.
    35. Millot, M. C. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis using immobilized proteins as chiral selectors. J Chromatogr B, 2003, 797, 131-159.
    36. Eriksson, B. M.; Wallin, A. Evaluation of the liquid-chromatographic resolution of indenoindolic racemic compounds on three Protein-based chiral stationary phases.J Pharmaceut Biomed Anal, 1995, 13 (4-5), 551-561.
    37. Hassan, Y.; Enein, A. High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on Polysaccharide-type chiral stationary Phases. J Chromatogr A, 2001, 906, 185-193.
    38. Kartozia, l.; Kanyonyo, M.; HapPaerts, T. et al. Comparative HPLC enantioseparation of new chiral hydantoin derivatives on three different polysaccharide type chiral stationary phases. J Pharmaceut Biomed Analysis, 2002, 27(3-4), 457-465.
    39. Eto, s.; Noda, H.; Noda, A. Chiral separation of barbiturates and hydantoins by reversed-phase high performance liquid chromatography using a 25 or 50mm short ODS catridge column viaβ-cyclodextrin inclusion complexes. J Chromatogr, 1992, 579, 253-258.
    40. Petersen, P. V.; Ekelund, J.; Olsen, L. et al. Chiral separations ofβ-blocking drug substances using the Pirkle-typeα-Burke ? chiral stationary Phase. J Chromatogr. A, 1997, 757(l-2), 65-71.
    41. Ward, T.; FarrisШA. Chiral separations using the macrocyclic antibioties: a review. J Chromatogr A, 2001, 906 (l-2), 73-89.
    42. Hoffmann, C. V.; Pell, R.; La¨mmerhofer, M.; Lindner, W. Synergistic Effects on Enantioselectivity of Zwitterionic Chiral Stationary Phases for Separations of Chiral Acids, Bases, and Amino Acids by HPLC. Anal. Chem. 2008, 80, 8780–8789.
    43. Yamamoto, C.; Okamoto, Y. Optically Active Polymers for Chiral Separation Bull. Chem. Soc. Jpn., 2004, 77, 227–257.
    44. Ikai, T.; Okamoto, Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography.Chem Rev, 2009, 109, 6077–6101.
    45. Okamoto, Y. Chiral Polymers for Resolution of Enantiomers. J. Polym. Sci., Part A: Polym. Chem. 2009. 47, 1731–1739.
    46. Szwarc, M. Comments on“Living Polymerization: Rationale for Uniform Terminology”by Darling et al. J. Polym. Sci., Part A: Polym. Chem. 2000, 38(10), 1710-1711.
    47. Szwarc M.; Levy M.; Milkovich R. Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers, J. Am. Chem. Soc., 1956, 78, 2656-2657.
    48. Otsu T.; Yoshida M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters, Macromol. Chem. Rapid Commun., 1982, 3, 127-132.
    49. Otsu T.; Yoshida M.; Tazaki T. A model for living radical polymerization. Macromol. Chem. Rapid Commun., 1982, 3, 133-140.
    50. Solomon D. H.; Vaverly G.; Rizzardo E. US Oatent, 4, 581, 429.
    51. Georges M. K.; Veregin R. P. N.; Kazmaier P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26, 2987-2988.
    52. Wang J. S.; Matyjaszewski K. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc., 1995, 117, 5614-5615.
    53. Kato M.; Kamigaito M.; Sawamoto M.; Higashimura T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphe noxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.
    54. Wang, J. S.; Matyjaszewski, K.“Living”/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules, 1995, 28, 7572-7573.
    55. Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature chemistry, 2009, 286-288.
    56. Davis, K. A.; Matyjaszewski, K. Statistical, gradient, and segmented copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. 2002, 159, 1–157.
    57. Lobb, E. J.; Ma, I.; Billingham, N. C.; Armes, S. P.; Lewis, A. L. Facile synthesis of well-defined, biocompatible phosphorylcholine-based methacrylate copolymers via atom transfer radical polymerization at 20°C. J. Am. Chem. Soc. 2001, 123,7913–7914.
    58. Tsarevsky, N. V., Bencherif, S. A. & Matyjaszewski, K. Graft copolymers by a combination of ATRP and two different consecutive click reactions. Macromolecules. 2007, 40, 4439–4445.
    59. Gao, H.; Matyjaszewski, K. Synthesis of molecular brushes by‘grafting onto’method: Combination of ATRP and click reactions. J. Am. Chem. Soc. 2007, 129, 6633–6639.
    60. Matyjaszewski, K.; Beers, K. L.; Kern, A.; Gaynor, S. G. Hydrogels by atom transferradical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 823–830.
    61. Sheiko, S. S., Sumerlin, B. S. & Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008. 33, 759–785.
    62. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 2006, 31, 1068–1132.
    63. Matyjaszewski, K. The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials. Polym. Int. 2003, 52, 1559-1565.
    64. Qin, D. Q.; Qin, S. H.; Qiu, K. Y. A Reverse ATRP Process with a Hexasubstituted Ethane Thermal Iniferter Diethyl 2,3-Dicyano-2,3-di(p-tolyl)succinate as the Initiator. Macromolecules, 2000, 33 (19), 6987–6992.
    65. Jakubowski, W.; Matyjaszewski, K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 4139-4146.
    66. Min, K.; Gao, H. F.;Matyjaszewski, K. Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer(AGET). J. Am. Chem.Soc., 2005, 127(11), 3825-3830.
    67. Min, K.; Jakubowski, W.; Matyjaszewski, K. AGET ATRP in the Presence of Air in Miniemulsion and in Bulk. Macromol. Rapid commun., 2006, 27, 594-598.
    68. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process., Macromolecules, 1998, 31, 5559-5562.
    69. Goto A.; Sato K.; Fukuda T.; Moad G.; Rizzardo E.; Thang S. H. Mechanism and Kinetics of RAFT (Reversible Addition-Fragmentation Chain Transfer)-Based Controlled Radical Polymerization of Styrene, Polym. Prep., 1999, 40, 397-398.
    70. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living Free Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998, 31, 5559-5562.
    71. Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L.Water-Soluble Polymers. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT. Macromolecules, 2001, 34, 2248-2256.
    72. Sumerlin, B. S.; Donovan, M. S.; Mitsukami, Y.; Lowe, A. B.; McCormick, C. L. Water-Soluble Polymers. 84. Controlled Polymerization in Aqueous Media of Anionic Acrylamido Monomers via RAFT. Macromolecules, 2001, 34, 6561-6564.
    73. Sumerlin, B. S.; Lowe, A. B.; Thomas, D. B.; McCormick, C. L. Aqueous Solution Properties of pH-Responsive AB Diblock Acrylamido Copolymers Synthesized via Aqueous RAFT. Macromolecules, 2003, 36, 5982-5987.
    74. Lowe, A. B.; Sumerlin, B. S.; Donovan, M. S.; McCormick, C. L. Facile Preparation of Transition Metal Nanoparticles Stabilized by Well-defined (Co)polymers Synthesized via Aqueous RAFT. J. Am. Chem. Soc. 2002, 124, 11562-11563.
    75. Sumerlin, B. S.; Lowe, A. B.; Stroud, P. A.; Zhang, P.; Urban, M. W.; McCormick, C. L. Modification of Gold Surfaces With Water-Soluble (Co)polymers Prepared via Aqueous Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Langmuir, 2003, 19, 5559-5562.
    76. De Brouwer, H.; Schellekens, M. A. J.; Klumperman, B.; Monteiro, M. J.; German, A. L. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition- fragmentation chain-transfer (RAFT) polymerization, J. Polym. Sci., Part A: Polym.Chem., 2000, 38: 3596-3603.
    77. Chong, (B) Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process. Macromolecules. 1999, 32, 2071-2074.
    78. Rizzardo E, Mayadunne R, Moad G, Thang SH. Tailored polymer architectures by reversible addition-frasmentation chain transfer. Macromol Symp, 2001, 174, 209-212.
    79. Stenzel-Bosenbaum, M.; Davis, T. P.; Chen, V.; Fane, A. G. Star-Polymer Synthesis via Radical Reversible Addition-Fragmentation Chain-Transfer Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2777-2783.
    80. Boschmann, D.; Vana, P. Z-RAFT Star Polymerizations of Acrylates: Star Coupling via Intermolecular Chain Transfer to Polymer. Macromolecules, 2007, 40(8), 2683–2693.
    81. Ugelstad, J.; El-Asser, M. S.; Vanderhoff, J. W. Emulsion Polymerization : Initiation of Polymerization in Monomer Droplets. J. Polym. Sci. Polym. Lett., 1973, 11, 503-513.
    82. Landfester, K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles.Angew. Chem. Int. Ed. 2009, 48, 2–22.
    83. Bon, S. A. F.; Bosveld, M.; Klumperman, B.; German, A. L.; Controlled radical polymerization in emulsion. Macromolecules, 1997, 30, 324-326.
    84. Apostolovie, B.; Quattrini,E.; Butté, A.; Storti, G.; Morbidelli, M. DECHEMA Monographs. 2004, 138, 115-121.
    85. Uzulina, I.; Kanagasabapathy, S.; Claverie, J. Reversible addition fragmentation transfer (RAFT) polymerization in emulsion. Macromol Symp. 2000, 150, 33-38.
    86. Monteiro, M. J.; De Barbeyrac, J. Free-Radical Polymerization of Styrene in Emulsion Using a Reversible Addition?Fragmentation Chain Transfer Agent with a Low Transfer Constant: Effect on Rate, Particle Size, and Molecular Weight. Macromolecules, 2001, 34, 4416-4423.
    87. Monteiro, M. J.; Sj?berg, M.; Van Der Vlist, J.; Gottgens, C. M. Synthesis of butylacrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: Effect of surfactant migration upon film formation. J. Polym. Sci.; Part A: Polym. Chem. 2000, 38(21), 4206-4217.
    88. Fontenot, K.; Schork, F. J. Batch polymerization of methyl methacrylate in mini/macroemulsions. J. Appl Polym Sci. 1993, 49, 633-655.
    89. Brouwer, H. D.; Tsavalas, J. G.; Schork, F. J.; Monteiro, M.J. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer. Macromolecules, 2000, 33, 9239-9246.
    90. Tsavalas, J. G.; Schork, F. J.; Brouwer, H. D.; Monteiro, M.J. Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules, 2001, 34, 3938-3946.
    91. Monteiro, M. J.; Hodgson, M.; Brouwer, H. D. The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerization. J. Polym. Sci.; Part A: Polym. Chem. 2000, 38(21), 3864-3874.
    92. Luo, Y. W.; Tsavalas, J.; Schork, F. J. Theoretical Aspects of Particle Swelling in Living Free Radical Miniemulsion Polymerization. Macromolecules, 2001, 34, 5501-5507.
    93. Rodríguez, R.; Barandiaran, M. J.; Asua, J. M. Particle Nucleation in High Solids Miniemulsion Polymerization. Macromolecules 2007, 40, 5735-5742.
    94. Huang, X. Y.; Sudol, E. D.; Dimonie, V. L.; Anderson, C. D. ; El-Aasser M. S. Stability in Styrene/HD Miniemulsions Containing a RAFT Agent. Macromolecules, 2006, 39, 6944-6950.
    95. Monteiro, M. J.; De Barbeyrac, J. Free-radical polymerization of styrene in emulsion using a Reversible Addition-Fragmentation Chain Transfer agent with a low transfer constant: effect on rate, particle size, and molecular weight. Macromolecules, 2001, 34(13), 4416-4423.
    96. Pham, B. T. T.; Nguyen, D.; Ferguson, C. J.; Hawkett, B. S.; Serelis, A. K.; Such, C. H. Miniemulsion Polymerization Stabilized by Amphipathic Macro RAFT Agents. Macromolecules, 2003,36, 8907-8909.
    97. Zhou, X. D.; Ni, P. H.; Yu, Z. Q. Comparison of RAFT polymerization of methylmethacrylate in conventional emulsion and miniemulsion systems. Polymer, 2007, 48, 6262-6271.
    98. Pérez-Moral, N.; Mayes, A. G. Molecularly Imprinted Multi-Layer Core-Shell Nanoparticles-A Surface Grafting Approach. Macromol. Rapid Commun. 2007, 28, 2170–2175.
    99. Luo Y, Gu H. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization. Macromol Rapid Commun 2006, 27, 21-25.
    100. Butté, A.; Storti, G.; Morbidelli, M. Miniemulsion Living Free Radical Polymerization by RAFT. Macromolecules, 2001, 34 (17), 5885–5896.
    101. Zheng, G. H.; Pan, C. Y. Reversible Addition-Fragmentation Transfer Polymerization in Nanosized Micelles Formed in Situ. Macromolecules 2006, 39, 95-102.
    102. Shim, S. E.; Shin, Y.; Jun, J. W.; Lee, K.; Jung, H.; Choe, S. Living-Free-Radical Emulsion Photopolymerization of Methyl Methacrylate by a Surface Active Iniferter (Suriniferter). Macromolecules, 2003, 36, 7994-8000.
    103. Lee, H. J.; Lee, J. M.; Shim, S. E.; Lee, B. H.; Choe, S. Synthesis of carboxylic acid functionalized nanoparticles by reversible addition–fragmentation chain transfer (RAFT) miniemulsion polymerization of styrene. Polymer, 2005, 46, 3661–3668.
    104. Xu, W. L.; Cheng, Z. P.; Zhang, L. F.; Zhang, Z. B.; Zhu, J.; Zhou, N. C.; Zhu, X. L. Synthesis and Properties of Crosslinked Chiral Nanoparticles via RAFT Miniemulsion Polymerization. J. Polym. Sci.; Part A: Polym. Chem. 2010, 48, 1324–1331.
    105. Rene, R.; Francois, D.; Tropper, Anna. R. New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamide-co-p-acrylamidophenyl. beta.-lactoside). Bioconjugate chem. 1992, 3, 256-261.
    106. Al-Bagoury, M.; Buchholz, K.; Yaacoub, E. J. Synthesis of well-designed polymers carrying saccharide moieties via RAFT miniemulsion polymerization. Polym. Adv. Technol. 2007, 18, 313–322.
    107. Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L. The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2003, 44, 6761–6765.
    108. Yashima, E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A, 2001, 906, 105 -125.
    109. Haddleton, D. M.; Ohno, K. Well-Defined Oligosaccharide-Terminated Polymers from Living Radical Polymerization. Biomacromolecules, 2000, 1, 152-156.
    110. Ikai, T.; Okamoto, Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem. Rev. 2009, 109, 6077–6101.
    111. Chen, Y. M.; Wullf, G.., ABA and Star Amphiphilic Block Copolymers Composed of Polymethacrylate Bearing a Galactose Fragment and Poly(ε-caprolactone), Macromol. Rapid. Commun. 2002, 23, 59-63.
    112. García-Martín, M. G.; Jiménez-Hidalgo, C.; Galbis, J. A, Synthesis and Characterization of Some New Homo- and Copoly(vinylsaccharides). Some Preliminary Studies as Drug Delivery, Polymer, 2000, 41, 821-826.
    113. Meng, J. Q.; Du, F. S.; Liu, Y. S.; Li, Z. C., Atom Transfer Radical Poly- merization of 6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-D-galactopyranose in Solution, J Polym Sci Part A: Polym Chem, 2005, 43, 752-762.
    114. Wang, J.; Zhu, X. L.; Cheng, Z. P.; Zhang, Z. B.; Zhu, J. Preparation, Characterization, and Chiral Recognition of Optically Active Polymers Containing Pendent Chiral Units via Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3788–3797.
    115. Kolb, C. H.; M. Finn, G.; Sharpless. K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004– 2021.
    116. Huisgen, R. On the Mechanism of 1, 3-Dipolar Cycloadditions. Reply. J. Org. Chem., 1968, 33, 2291-2297.
    117. Patton, G. C. Development and applications of“click”chemistry. Patton, 2004, 57-64.
    118. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928–3932.
    119. Gao, H. F.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the“Click”Coupling Method. Macromolecules, 2006, 39, 4960-4965.
    120. Yuan, Y. Y.; Wang, Y. C.; Du, J. Z.; Wang, J. Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and“Click”Chemistry. Macromolecules, 2008, 41, 8620-8625.
    121. Munteanu, M.; Choi, S. W.; Ritter, H. Cyclodextrin Methacrylate via Microwave-Assisted Click Reaction. Macromolecules, 2008, 41, 9619-9623.
    122. Zhai, X.; Peleshanko, S.; Klimenko, N. S.; Genson, K. L.; Vaknin, D.; Vortman, M. Y.; Shevchenko, V. V.; Tsukruk, V. V. Amphiphilic Dendritic Molecules: Hyperbranched Polyesters with Alkyl-Terminated Branches. Macromolecules, 2003, 36, 3101-3110.
    123. Cho, B. K.; Jain, A.; Nieberle, J.; Mahajan, S.; Wiesner, U. Synthesis and Self-Assembly of Amphiphilic Dendrimers Based on Aliphatic Polyether-Type Dendritic Cores. Macromolecules, 2004, 37, 4227-4234.
    124. Topham, P. D.; Sandon, N.; Read, E. S.; Madsen, J.; Ryan, A. J.; Armes, S. P. Facile Synthesis of Well-Defined Hydrophilic Methacrylic Macromonomers Using ATRP and Click Chemistry. Macromolecules, 2008, 41, 9542-9547.
    125. Johnson, J. A.; Lewis, D. R.; Díaz, D. D.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Synthesis of Degradable Model Networks via ATRP and Click Chemistry. J. Am. Chem. Soc., 2006, 128, 6564-6565.
    126. Ranjan, R.; Brittain, W. J. Combination of Living Radical Polymerization and Click Chemistry for Surface Modification. Macromolecules, 2007, 40, 6217-6223.
    127. Werne, T. V.; Patten, T. E. Preparation of Structurally Well-Defined Polymer-Nanoparticle Hybrids with Controlled/Living Radical Polymerizations. J. Am. Chem. Soc., 1999, 121, 7409-7410.
    128. Chang, Z. J.; Xu, Y.; Zhao, X.; Zhang, Q. H.; Chen, D. J. Grafting Poly(methylmethacrylate) onto Polyimide Nanofibers via“Click”Reaction. ACS Appl. Mater. Interfaces, 2009, 2804–2811.
    129. Xu, L. Q.; Yao, F.; Fu, G. D.; Shen, L. Simultaneous“Click Chemistry”and Atom Transfer Radical Emulsion Polymerization and Prepared Well-Defined Cross-Linked Nanoparticles. Macromolecules, 2009, 42, 6385–6392.
    130. O’Reilly, R. K.; Joralemon, M. J.; Wooley, K. L.; Hawker, C. J. Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chem. Mater., 2005, 17, 5976-5988.
    131. Li, Y.; Benicewicz, B. C. Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions. Macromolecules, 2008, 41, 7986-7992.
    132. Ranjan, R.; Brittain, W. J. Synthesis of High Density Polymer Brushes on Nanoparticles by Combined RAFT Polymerization and Click Chemistry. Macromol. Rapid Commun., 2008, 29, 1104–1110.
    133. Ranjan, R.; Brittain, W. J. Combination of Living Radical Polymerization and Click Chemistry for Surface Modification. Macromolecules, 2007, 40, 6217-6223.
    134. Lummerstorfer, T.; Hoffmann, H. Click Chemistry on Surfaces: 1,3-Dipolar Cycloaddition Reactions of Azide-Terminated Monolayers on Silica. J. Phys. Chem. B, 2004, 108, 3963-3966.
    135. Such, G. K.; Tjipto, E.; Postma, A.; Johnston, A. P. R.; Caruso, F. Ultrathin, Responsive Polymer Click Capsules. Nano Lett., 2007, 7, 1706-1710.
    136. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Dirvianskyte, N.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J. M.; Rowan, A. E.; Brust, M. Bionanoconjugation via Click Chemistry: The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjugate Chem., 2006, 17, 1373-1375.
    137. Tasdelen, M. A.; Camp, W. V.; Goethals, E.; Dubois, P.; Prez, F. D.; Yagci, Y. Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and“Click”Chemistry Processes. Macromolecules, 2008, 41, 6035-6040.
    138. Moad, G.; Chiefari, J.; Thang, S. H.; Rizzardo, E., Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (The Lifeof RAFT), Polym. Int. 2000, 49, 993-1001.
    139. Landfester, K. Polyreactions in Miniemulsions. Macromol. Rapid Commun. 2001, 22, 896-936.
    140. Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 1998, 75, 107-163.
    141. An, Z. S.; Tang, W.; Hawker, C. J.; Stucky, G. D. One-Step Microwave Preparation of Well-Defined and Functionalized Polymeric Nanoparticles, J. Am. Chem. Soc. 2006, 128, 15054-15055.
    142. Khan, M. A. Armes, S. P. Conducting Polymer-Coated Latex Particles. Adv. Mater. 2000, 12, 675-68l.
    143. Tan, W. H.; Wang, K. M.; He, X. X.; Zhao, X. J.; Drake, T.; Wang, L.; Bagwe, R, P. Bionanotechnology based on silica nanoparticles. Medicinal Research Rev. 2004, 24(5), 621-638.
    144. Lyatskaya, Y.; Balazs, A. C. Modeling the Phase Behavior of Polymer?Clay Composites. Maeromoleeules,1998, 31, 6676—6680.
    145. Radhakrishnan, B.; Ranjian, R.; Brittain , W. J. Surface initiated polymerizations from silica nanoparticles. Soft Matter, 2006, 2, 386-396.
    146. Li C, Z.; Benicewicz, B. C. Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition?Fragmentation Chain Transfer Polymerization. Maeromoleeules, 2005, 38, 5929-5936.
    147. Liu, C. H.; Pan, C. Y. Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer, 2007, 48, 3679-3685.
    148. Zhao, Y. L.; Perrier, S. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Maeromoleeules, 2006, 39, 8603-8608.
    149.刁全平,侯冬岩,回锐化.高效液相色谱法拆分几种手性药物的研究.辽宁师范大学,硕士研究生学位论文. 2005, 6.
    150. Liu, W.P.; Gan, J. Y.; Qin, S. J. Separation and Aquatic Toxieity of Enantiomers of synthetic Pyrethroid Insecticides [J]. Chirality, 2005, 17: 127-513.
    151. Chankvetadze, B.; Chankvetadze, L.; Sidamonidze, S.; Kasashima, E.; Yashima, E.;Okamoto, Y. 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high performance liquid chromatographic enantioseparation. Journal of Chromatography A, 1997, 67-77.
    152. Hou, S. C.; Zhou, Z. Q.; Qiao, Z.; Guo, H. C.; Shi, X. Y.; Wang, M. Enantiomer Separation of Tebuconazole and Its Potential Impurities bu High Performance Liquid Chromatography Using Cellulose Dericative-Based Chiral Stationary Phase. Chromatographia, 2003, 57: 177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700