Zn基微/纳米超结构的可控合成、表征及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机微/纳米超结构的成分、尺寸、形貌和结构等对其性能有着十分重要的影响,探索它们之间的关系已经成为现代微/纳米材料领域研究的热点。在光子学、电子学、物理与化学领域,Zn基超结构有着重要的应用前景。本论文系统的研究和探索了ZnO、硅酸锌、Ag/ZnO和Cu/ZnO等Zn基超结构的可控合成、组装和性能。
     1.在不使用表面活性剂与模板的条件下,用简单的水热技术,仅仅通过调节反应参数,成功地合成了形貌、尺寸可控的ZnO三维超结构,包括花形、星形、球形与海胆形结构。ZnO超结构气敏性能测试表明,不同形貌的ZnO超结构对乙醇的灵敏度与选择性不同,其中,放射状花形ZnO超结构对乙醇的灵敏度高达11.3。
     随后,使用表面活性剂在导电玻璃表面,水热合成了ZnO三维花状超结构薄膜。通过调节表面活性剂种类与锌源的用量,获得了不同大小和表面粗糙度可控的ZnO三维花状超结构薄膜。研究表明ZnO三维花状超结构薄膜的表面粗糙度是影响其荧光性质的一个重要因素
     2.使用水热合成方法,在Si基片上首次制备了形貌可控的Zn4Si2O7(OH)2·H2O(下文简称ZSO)空心花形分级超结构,这种超结构的特点是,很多根平行的初级亚微米棒组装成单个次级棒束,多个次级棒束的一端连接在起、组装成空心花形分级超结构。研究了反应物浓度、反应时间、反应温度、表面活性剂、Zn源种类及后处理温度,对ZSO花形分级超结构形貌与晶体结构的影响。(a)Zn2+浓度的变化主要影响构成ZSO超结构中次级棒束的形貌,随着浓度的降低,组成次级棒束的初级单元依次变为亚微米棒、扁棱柱形亚微米片薄纳米片、圆柱形亚微米棒。(b)反应时间的变化,直接决定是否能够得到正交晶型ZSO的花形超结构薄膜:反应时间越长,薄膜中ZSO的含量越高;反应时间为12h时,得到较纯的正交晶型ZSO花形分级超结构薄膜。(c)反应温度不仅影响超结构的形貌,还改变超结构的成分;温度越高,次级棒束的分级特征越明显、次级棒束中含有的初级棒尺寸越小,超结构中正交晶型ZSO的含量也越高。(d)表面活性剂主要改变正交晶型ZSO分级超结构的次级棒束形貌,使用表面活性剂,可以实现分级结构中次级棒束的进一步分级,也可以实现次级棒束向不分级的单根次级棒转变。(e)使用Zn源的种类,可以控制次级棒束的分级程度,即实现次级棒束向单根次级微米棒、或向直径逐渐变小的单根次级微/纳微米棒转化。(f)后处理温度主要影响晶体结构,低于500℃时,对ZSO的晶体结构与形貌无影响;后处理温度为950℃时,正交晶型的ZSO转变为三角晶型的Zn2SiO4,而对ZSO的形貌影响不大。随后讨论了ZSO花形分级超结构的形成机理。
     正交晶型的ZSO的荧光性质研究表明,组成花形超结构的次级棒束的分级特征越明显、表面粗糙度越大,荧光光谱的强度越强,反之越弱。表面润湿性研究表明,接触角与表面形貌有关,不同表面形貌的ZSO超结构薄膜与水的接触角不同,次级结构为棒束的ZSO接触角最大,达到143.1°。
     3.用ZnO超结构和AgNO3为原料,以浸涂的方法,制备了对甲醇气敏响应较好的Ag/ZnO三维花形超结构;在Ag/ZnO三维花形超结构中,将Ag+负载到ZnO三维花形超结构中亚微米棒的表面,80℃烘干后,Ag+以AgNO3、Ag20的形式存住;300℃热处理后,Ag+转变为金属Ag,同时在ZnO棒表而出现长方形孔。研究发现,Ag+对ZnO亚微米棒的表面有较强的刻蚀作用;Ag+的浓度越高、反应时间越长,刻蚀作用越明显;在Ag+浓度与反应时间不变的情况下,热处理温度决定Ag+对ZnO亚微米棒表面的刻蚀效果。此外,热处理对Ag/ZnO三维花形超结构的气敏性能影响较大,热处理前,超结构对CH30H的灵敏度仅为2.3,而热处理后对CH30H的灵敏度达到9.3。
     通过掺杂的方式,获得了光催化性能较好的Cu/ZnO三维花形超结构。在Cu/ZnO三维花形超结构中,当Cu2+的掺杂量低于5%时,Cu2+的作用主要是改变ZnO花形超结构中棒的数量与形貌,即Cu2+掺杂导致组成ZnO三维花形超结构中棒的数量增加,棒的尖端出现台阶形结构,或者刻蚀棒的侧而;Zn2+:Cu2+摩尔比为7:1时,Cu2+负载在六棱柱形ZnO棒的表面,形成CuO/ZnO花形核壳超结构;Zn2+:Cu2+摩尔比为3:1时,产品中单斜晶型CuO与六方晶型ZnO共存;Zn2+:Cu2+摩尔比为3:4时,产物为掺Zn的CuO海胆形纳米超结构。荧光光谱研究表明,Cu2+掺杂量增加,Cu/ZnO三维花形超结构的荧光强度减弱;Cu/ZnO三维花形超结构的光催化性能研究表明,Zn2+:Cu2+摩尔比为7:1时,制备的Cu/ZnO三维花形超结构催化剂在连续降解甲基橙与直接湖蓝染料的过程中表现出良好的催化稳定性,在180 min内,降解率分别达到84.7%、77.6%。
     4.以金属Zn为原料,在透射电子显微镜内,用电子束原位辐照的方法制备了形状多样、尺寸可控、单分散、高纯度的金属Zn纳米粒子。Zn纳米粒子形状多样,包括长方形、三角形、菱形与六棱柱形等,它们的直径在10-30 nm之间。在Zn纳米粒子形成过程中,电子束在原材料内部产生的热柱导致材料局部温度迅速升高;电流密度越大,电子剂量越多、电子束的直径越小,导致局部原料升华越迅速,纳米晶体的生长过程越快,得到的Zn纳米粒子越小;辐照时间增长时,小的Zn粒子可以融合成大的Zn纳米粒子。
The properties of inorganic micro/nano-superstructures are dependent on their composition, size, shape and crystalline structure. Investigation on the relationships among these features has attracted increasing attentions in modern science and technology. Zn-based materials superstructures are important for the potential applications, including, photonics, electronics, physics, and chemistry. In this thesis, we have systematically studied and explored the controllable synthesis, assembly, and properties of Zn-based materials superstructures, which include ZnO, Zn silicates, Ag/ZnO and Cu/ZnO composite materials.
     1. ZnO 3-dimensiaonal (3D) superstructures with controlled morphology and size, including flower-like, star-like, sphere-like and sea urchin-like shapes, are fabricated by a simple hydrothermal method without any surfactant or template. The gas sensing examinations show that the different Zn-based superstructures have different sensitivity to ethanol, and the sensitivity of the radial-like ZnO 3D flower-like superstructures to ethanol can reach 11.3.
     The films made of the ZnO 3D flower-like superstructures on the glass are fabricated by a simple hydrothermal method using the surfactant, and the surface roughness of the ZnO 3D superstructure films can be conveniently controlled by changing the different surfactants and dosage of Zn sources, with excellent reproducibility. The photoluminescence (PL) spectra of the ZnO 3D superstructure films show that their PL properties are dependent on the surface roughness of as-synthesized ZnO superstructure films.
     2. Zn4Si2O7(OH)2·H2O (ZSO) 3D hollow flower-like hierarchical superstructure films deposited on the Si substrate are firstly prepared by a simple hydrothermal route. Each hollow superstructure is consisted of secondary rod bundles which are assembled by many primary rods. The morphologies of the ZSO 3D superstructures can be tuned by changing the concentration of reactant, reaction time and temperature, surfactant, the Zn sources and annealing temperature. The results are summarized as follows:(a) The morphology of the secondary rod bundles within the ZSO 3D superstructures can be conveniently controlled from micrometer-sized prism to sub-micrometer slice, sub-micrometer rods and nanorods by only tuning the concentration of Zn2+. (b) The morphology and structure of the ZSO 3D superstructures are related to the reaction time; with the temperature increasing, the rod size of the bundles is getting smaller and the molar ratio of the ZSO:ZnO is increasing. (c) The reaction temperature not only affects the shape of the superstructures, but also changes their compositions. The higher the temperature, the more remarkable is the hierarchical feature of the secondary rod bundle, and the smaller is the size of the primary rods in the secondary bundles, and the higher is the molar ratio of the ZSO:ZnO within a superstructure. (d) The surfactant has effects on the morphology of the secondary rod bundles within the ZSO hierarchical superstructures; it realizes further hierarchy of the secondary bundles as well as their transformation to single non-hierarchical secondary rod. (e) The hierarchical structures of the secondary rod bundles, which realize the transformation from their united secondary bundles to a single secondary micrometer-sized rod, or to a single secondary micro- or nanometer-sized rod with its diameter varying, can be controlled by using different Zn sources. (f) The crystal structure is mainly depended on heating treatment temperature; below 500℃, the crystal structure of the ZSO is not changed, and at 950℃, orthorhombic ZSO superstructure can be transferred into monoclinic Zn2SiO4.
     The PL spectra from the orthorhombic ZSO 3D superstructures films show that the stronger the intensity of the PL spectra, the smaller is the diameter of primary rod in secondary rod bundles, and the bigger is the ZSO surface roughness. The investigation on the wettability of the ZSO superstructures films shows that the angle of contact (CA) is mostly relied on the surface shape, and the CA of the ZSO superstructure films varying with their surface shape. It is found that the CA of the ZSO superstructure films consisted of the secondary rod bundles is the highest and reach to 143.1.
     3. Ag/ZnO 3D superstructures are prepared by the dip coating process, using as-synthesized ZnO 3D supperstructures and AgN03 as the source materials; these composite superstructures show excellent gas sensitivity to methyl alcohol. Ag+ on the surface of the ZnO submicrorods exits in a form of AgNO3 or Ag2O after being dried at~80℃. Annealing at 300℃, AgNO3 or Ag2O is transformed into metal Ag (nanoparticles) and the rectangular holes form on the surface of the ZnO rods, suggesting that the surface of the ZnO submicrorods can be etched by metal Ag nanoparticles. The etching is enhanced with the increase of the concentration of Ag+ solution and reaction time, and it is also dependent on the heating treatment temperature. The Ag/ZnO 3D superstructures by annealing at 300℃can improve their selectivity to methyl alcohol, and their sensitivity is up to 9.3.
     The Cu/ZnO 3D flower-like superstructures with excellent photocatalysis property can be fabricated by doping method. These morphologies of the Cu/ZnO 3D superstructures can be varied by tuning the reactant concentration. When the content of Cu2+ is below 5%, the Cu2+ mainly change the amount and shape of the ZnO rods inside the ZnO 3D superstructure; the doping of Cu2+ leads to the increase of the rods in ZnO 3D superstructure, companying the formation of the step-like shape at the rod top. When the molar ratio of Zn2+: Cu2+ is 7:1, Cu2+ is loaded on the surface of ZnO rods, forming CuO/ZnO core-shell rods. When the molar ratio of Zn2+:Cu2+ is 3:1, the mixture of the CuO and ZnO flower-like rods is obtained. When the molar ratio of Zn2+:Cu2+ is 3:4, the Zn doped CuO urchin-like superstructures are fabricated. The PL intensity of the Cu/ZnO 3D superstructures will decrease with the increasing doping of Cu2+. The Cu/ZnO 3D structures fabricated with the molar ratio of Zn2+ Cu2+ of 7:1 exhibit a higher photocatalytic activity. The efficiencies of the photocatalytic degradation of methyl orange and direct shy blue 5B are investigated; the degradation ratio of the samples reaches 84.7% and 77.6%, respectively.
     4. In situ electron-beam irradiation in a transmission electron microscope is performed to fabricate different shape, controllable size, monodispersed, and high pure Zn nanoparticles by using Zn powders as the source material. As-synthesized Zn nanocrystals display various regular geometrical shapes, including rectangle, rhombus, triangle, and hexagon, with a diameter of 10-30 nm. During the formation of Zn nanoparticles, a convergent electron beam is focused on an raw Zn particle, and then cause partial melting and evaporation of the particle and subsequent nucleation and growth of Zn nanoparticles on the C film; the higher the dose of the electron beam, the smaller the diameter of the electron beam, the smaller is the diameters of Zn nanoparticles; while the smaller particles are merged each other under a longer period of the irradiation, resulting in the particles'growth.
引文
1. Velev, O. D. Self-assembly of unusual nanoparticle crystals, Science 2006,312,376-377.
    2. Michalak, D. J.; Amy, S. R.; Aureau, D.; Dai, M.; Esteve, A.; Chabal Y. J. Nanopatterning Si(111) surfaces as a selective surface-chemistry route, Nat. Mater.,2010,9,266-271.
    3. Hameren, R. V.; Schon, P.; Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting, Science 2006,314,1433-1436.
    4. Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami, Nat. Nanotechnol. 2009,5,121-126.
    5. Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks, Science 2001,291,630-633.
    6. Sacanna, S.; Irvine, W. T. M.; Chaikin, P. M.; Pine, D. J. Lock and key colloids, Nature 2010, 464,575-578.
    7. Moore, J. S.; Kraft, M. L. Synchronized self-assembly, Science 2008,320,620-621.
    8. Capito, R. M.; Azevedo, H. S.; Velichko, Y. S.; Mata, A.; Stupp, S.I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes, Science 2008,319, 1812-1816.
    9. Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.; Tough, bio-inspired hybrid materials, Science 2008,322,1516-1520.
    10. Fan, H.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H.; Lopez, G. P.; Brinker, C. J. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science 2004,304,567-571.
    11. Pokroy, B.; Kang, S. H.; Mahadevan, L.; Aizenberg, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies, Science 2009,323,237-240.
    12. Bierman, M. J.; Lau, Y. K. A.; Kvit, Al. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and eshelby twist, Science 2008,320,1060-1063.
    13. Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal:ZnO nanorods on Ag nanocrystals, J. Am. Chem. Soc.2009,131,12036-12037.
    14. Fang, X. S.; Bando, Y.; Gautam, U. K.; Ye, C. H.; Golberg, D. Inorganic semiconductor nanostructures and their field-emission applications,J. Mater. Chem.2008,18,509-522
    15. Li, Q. C.; Kumer, V.; Li, Y.; Zhang, H. T.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater.2005,17,1001-1006.
    16. Afzaal, M.; O'Brien, P. Recent developments in Ⅱ-Ⅵ and Ⅲ-Ⅵ semiconductors and their applications in solar cells, J. Mater. Chem.2006,16,1597-1602.
    17. Wang, Z. L. Nanopiezotronics, Adv. Mater.2007,19,889-892.
    18. Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"Focusing" of size distributions, J. Am. Chem. Soc.1998,120,5343-5344.
    19. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev.2005,105,1025-1102.
    20. Segets, D.; Gradl, J.; Taylor, R. K.; Vassilev, V.; Peukert, W. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy, ACS Nano 2009,3,1703-1710.
    21. Andelman, T.; Gong, Y.; Polking, M.; Yin, M.; Kuskovsky,I.; Neumark, G.; Brien, S. Morphological control and photoluminescence of zinc oxide nanocrystals, J. Phys. Chem. B 2005,109,14314-14318.
    22. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; Brien, S. Zinc Oxide Quantum Rods, J. Am. Chem. Soc.2004,126,6206-6207.
    23. Wang, Y. S.; Thomas, P. J.; O'Brien P. Nanocrystalline ZnO with ultraviolet luminescence, J. Phys. Chem. B 2006,110,4099-4104.
    24. Liu, J. F.; Bei, Y. Y.; Wu, H. P.; Shen, D.; Gong, J. Z.; Li, X. G.; Wang, Y. W.; Jiang, N. P.; Jiang, J. Z. Synthesis of relatively monodisperse ZnO nanocrystals from a precursor zinc 2,4-pentanedionate, Mater. Lett.2007,61,2837-2840.
    25. Bilecka, I.; Djerdj, I.; Niederberger, M. One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles, Chem. Commun.2008,886-888.
    26. Hu, X.; Gong, J.; Zhang, L.; Yu, J. C. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing, Adv. Mater.2008,20,4845-4850.
    27. Ratkovich, A.; Penn, R. L. Zinc oxide nanoparticle growth from homogenous solution: Influence of Zn:OH, water concentration, and surfactant additives. Mater. Res. Bull.2009,44, 993-998.
    28. Schneider, J. J.; Hoffmann, R. C.; Engstler, J.; Klyszcz, A.; Erdem, E.; Jakes, P.; Eichel, R. A.; Bauermann, L. P.; Bill, J. Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide, Chem. Mater.2010,22,2203-2212.
    29. Zhu, Y. C.; Bando Y. Large scale preparation of zinc nanosheets by thermochemical reduction of ZnS powders, Chem. Phys. Lett.2003,372,640-644.
    30. Chang, S.; Yoon, S. O.; Park, H. J.; Sakai, A. Luminescence properties of Zn nanowires prepared by electrochemical etching, Mater. Lett.2002,53,432-436.
    31. Wen, X.; Fang, Y.; Yang, S. Synthesis of ultrathin zinc nanowires and nanotubes by vapor transport, Angew. Chem. Int. Ed.2005,44,3562-3565.
    32. Wang, Y.; Zhang, L.; Meng, G.; Liang, C.; Wang, G.; Sun, S. Zn nanobelts:a new quasi one-dimensional metal nanostructure, Chem. Commun.2001,2632-2633.
    33. Peng, X. S.; Zhang, L. D.; Meng, G W.; Yuan, X. Y.; Lin, Y.; Tian, Y T. Synthesis of Zn nanofibres through simple thermal vapour-phase deposition, J. Phys. D:Appl. Phys.2003,36, L35-L38.
    34. Ma, H.; Li, C.; Su, Y.; Chen, J. Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures, J. Mater. Chem.2007,17,684-691.
    35. Narayan, J.; Venkatesan, R. K.; Kvit, A. Structure and properties of nanocrystalline zinc films, J. Nanopart. Res.2002,4,265-269.
    36. Ma, X.; Zachariah, M. R. Oxidation anisotropy and size-dependent reaction kinetics of zinc nanocrystals, J. Phys. Chem. C 2009,113,14644-14650.
    37. Olad, A.; Rasouli, H. Enhanced corrosion protective coating based on conducting polyaniline/zinc nanocomposite, J. Appl. Polymer Sci.2010,115,2221-2227.
    38. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H.; One-dimensional nanostructures:Synthesis, characterization, and applications, Adv. Mater. 2003,15,353-389.
    39. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett.1964,4,89
    40.梁长浩.中国科学院固体物理研究生博士学位论文.准一维纳米材料的催化合成、表征及物性研究.2003
    41. (a) Gudiksen, M. S.; Lauhon, L. J.; Wang, J. Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 2002,415,617-620; (b) Lieber, C. M. Nanostructure science and technology:building a big future from small things. MRS Bull. 2003,486-491; (c) Wu, Y.; Xiang, J.; Yang, C. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature 2004,430,61-65.
    42. Wu, J. J.; Liu, S. C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,Adv. Mater.2002,14,215-218.
    43. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides, Science 2001,291, 1947-1949.
    44. Gao, P. X.; Ding, Y.; Wang, Z. L. Electronic Transport in Superlattice-Structured ZnO Nanohelix, Nano. Lett.2009,9,137-143.
    45. Zhang, B. P.; Wakatsuki, K.; Binh, N. T.; Segawa, Y. Low-temperature growth of ZnO nanostructure networks, J. Appl. Phys.2004,96,340-343.
    46. Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P. Solution-grown zinc oxide nanowires, Inorg. Chem.2006,45,7535-7543.
    47. (a) Elen, K.; Bael, M. K. V.; Rul, H. V.; Haen, J.; Mullens, J. Additive-free hydrothermal synthesis of high aspect ratio ZnO particles from aqueous solution, Chem. Lett. 2006,35, 1420-1421; (b) Zhang, Y. Y.; Mu, J. Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate, Nanotechnology 2007,18,075606.
    48. (a) Li, Z. Q.; Xiong, Y. J.; Xie, Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem.2003,42,8105-8109; (b) Wang, J. M.; Gao, L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires, Solid State Commun.2004,132,269-271.
    49. (a) Du, J. M.; Liu, Z. M.; Huang, Y.; Gao, Y. N.; Han, B. X.; Li, W. J.; Yang, G. Y. Control of ZnO morphologies via surfactants assisted route in the subcritical water, J. Cryst. Growth 2005, 280,126-134; (b) Ni, Y. H.; Wei, X. W.; Ma, X.; Hong, J. M. CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals, J. Cryst. Growth 2005, 283,48-56; (c) Ni, Y. H.; Wei, X. W.; Hong, H. M.; Ye, Y. Hydrothermal preparation and optical properties of ZnO nanorods, Mater. Sci. Eng. B 2005,121,42-47.
    50. (a) Bai, F. F.; He, P.; Jia, Z. J.; Huang, X. T.; He, Y. Size-controlled preparation of monodispersed ZnO nanorods, Mater. Lett.2005,59,1687-1690; (b) Lepot, N.; Bael, M. K. V.; Rul, H. V.; Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Synthesis of ZnO nanorods from aqueous solution, Mater. Lett.2007,61,2624-29-627.
    51. (a) Music, S.; Popovic, S.; Maljkovic, M.; Dragcevic, E. Influence of synthesis procedure on the formation and properties of zinc oxide, J. Alloy. Compd.2002,347,324-332; (b) Xu, H. Y.; Wang, H.; Zhang, Y. C.; He, W. L.; Zhu M. K.; Wang, B.; Yan, H. Hydrothermal synthesis of zinc oxide powders with controllable morphology, Ceram. Int.2004,30,93-97; (c) Uekawa, N.; Yamashita, R.; Wu, Y. J.; Kakegawa, K. Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)(4)(2-) ions, Phys. Chem. Chem. Phys.2004,6,442-446.
    52. Elen, K.; Rul, H. V.; Hardy, A.; Bael, M. K. V.; Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Hydrothermal synthesis of ZnO nanorods:a statistical determination of the significant parameters in view of reducing the diameter, Nanotechnology 2009,20,055608.
    53. Lai, M.; Riley, D. J. Templated electrosynthesis of zinc oxide nanorods, Chem. Mater.2006, 18,2233-2237.
    54. Zhang, X. H.; Xie, S. Y.; Jiang, Z. Y.; Zhang, X.; Tian, Z. Q.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system, J. Phys. Chem. B 2003,107,10114-10118.
    55. Tong, Y. H.; Liu, Y. C.; Shao, C.; Liu, C.; Xu, C.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth and optical properties of faceted hexagonal ZnO nanotubes, J. Phys. Chem. B 2006,110, 14714-14718.
    56. Xu, L. F.; Liao, Q.; Zhang, J.; Ai, X.; Xu, D. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods, J. Phys. Chem. C 2007,111,4549-4552.
    57. (a) Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. K.; Yan, H. Q. Single-crystal gallium nitride nanotubes, Nature 2003,422,599-602; (b) Wang, Y.; Wu, K. As a whole:Crystalline zinc aluminate nanotube array-nanonet, J. Am. Chem. Soc.2005,127,9686-9687.
    58. (a) Ma, Y. R.; Qi, L. M.; Ma, J. M.; Cheng, H. M. Micelle-mediated synthesis of single-crystalline selenium nanotubes, Adv. Mater.2004,16,1023-1026; (b) Jia, C. J.; Sun, L. D.; Yan, Z. G..; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H. Iron oxide nanotubes-Single-crystalline iron oxide nanotubes, Angew. Chem., Int. Ed.2005,44, 4328-4333.
    59. Wu, J. J.; Liu, S. C.; Wu, C. T.; Chen, K. H.; Chen, L. C. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes, Appl. Phys. Lett.2002,81,1312-1314.
    60. Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T.; Thermal reduction route to the fabrication of coaxial Zn/ZrO nanocables and ZnO nanotubes, Chem. Mater.2003,15, 305-308.
    61. Hu, J. Q.; Bando, Y. Growth and optical properties of single-crystal tubular ZnO whiskers, Appl. Phys. Lett.2003,82(9),1401-1403.
    62. Fan, D. H.; Shen, W. Z.; Zheng, M. J.; Zhu, Y. F.; Lu, J. J. Integration of ZnO nanotubes with well-ordered nanorods through two-step thermal evaporation approach,J. Phys. Chem. C 2007, 111,9116-9121.
    63. Brenner, S. S.; Sears, G. W. Mechanism of whisker growth-Ⅲ nature of growth sites, Acta Metall.1956,4,268-270.
    64. Wagner, R. S.; Ellis, W. C. Vaper-Liquid-Solid mechanism of single crystal growth, Appl. Phys. Lett.1964,4,89-90.
    65. Zhang, J.; Sun, L. D. A simple route towards tubular ZnO, Chem. Commun.2002,262-263.
    66. (a) Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film, Adv. Mater.2005,17, 2477-2481; (b) Sun, Y.; Riley, D. J. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates,J. Phys. Chem. B 2006,110,15186-15192.
    67. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. Three-dimensional array of highly oriented crystalline ZnO microtubes, Chem. Mater.2001,13,4395-4398.
    68. Yu, H. D.; Zhang, Z.; Han, M.; Hao, X.; Zhu, F. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays, J. Am. Chem. Soc. 2005,127,2378-2379.
    69. Yu, Q. J.; Fu, W.; Yu, C.; Yang, H.; Wei, R.; Li, M.; Liu, S.; Sui, Y.; Liu, Z.; Yuan, M.; Zou, G.; Wang, G.; Shao, C.; Liu, Y. Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route, J. Phys. Chem. C 2007,111,17521-17526.
    70. Elias, J.; Zaera, R. T.; Wang, G. Y.; Clement, C. L. Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions, Chem. Mater.2008,20,6633-6637.
    71. Kar, S.; Santra, S. ZnO nanotube arrays and nanotube-based paint-brush structures:A simple methodology of fabricating hierarchical nanostructures with self-assembled junctions and branches, J. Phys. Chem. C 2008,112,8144-8146.
    72. (a) Sears, G. W. Mercury Whiskers, Acta Metallurgica 1953,1,457; (b) Sears, G. W. A Mechanism of Whisker Growth, Acta Metallurgica 1955,3,367-369; (c) Sears, G. W. A growth mechanism for mercury whiskers, Acta Metallurgica 1955,3,361-366.
    73. (a) Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales, Science 2002,295,2418-2421; (b) Colfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed.2003,42,2350-2365.
    74. (a) Bae, S. Y.; Seo, H. W.; Choi, H. C.; Park, J.; Park, J. J. Heterostructures of ZnO nanorods with various one-dimensional nanostructures, J. Phys. Chem. B 2004,108,12318-12326; (b) Yu, W. D.; Li, X. M.; Gao, X. D. Catalytic synthesis and structural characteristics of high-quality tetrapod-like ZnO nanocrystals by a modified vapor transport process, Cryst. Growth Des.2005,5,151-155.
    75. (a) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, Science 2004,303,1348-1351; (b) Shen, G.; Bando, Y.; Lee, C. Growth of Self-Organized Hierarchical ZnO Nanoarchitectures by a Simple In/In2S3 Controlled Thermal Evaporation Process,J. Phys. Chem.B 2005,109,10779-10785.
    76. (a) Xu, L.; Chen, Q.; Xu D. Hierarchical ZnO nanostructures obtained by electrodeposition.J. Phys. Chem. C 2007,111,11560-11565; (b) Li, G. R.; Lu,X. H.; Qu, D. L.; Yao, C. Z.; Zheng, F. L.; Bu, Q.; Dawa, C. R.; Tong, X Y. Electrochemical growth and control of ZnO dendritic structures,J. Phys. Chem. C 2007,111,6678-6683.
    77. (a) Sounart, T. L.; Liu, J.; Voigt, J. A.; Huo, M.; Spoerke, E. D.; McKenzie, B. Secondary nucleation and growth of ZnO,J. Am. Chem. Soc.2007,129,15786-15793; (b) Zhu, P.; Zhang, J.; Wu, Z.; Zhang, Z. Microwave-assisted synthesis of various ZnO hierarchical nanostructures: effects of heating parameters of microwave oven. Cryst. Growth Des.2008,8,3148-3153.
    78. Shi, L.; Bao, K.; Cao, J.; Qian, Y. Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure, CrystEngComm 2009,11,2009-2014.
    79. Yue, S.; Lu, J.; Zhang, J. Synthesis of three-dimensional ZnO superstructures by a one-pot solution process, Mater. Chem. Phys.2009,117:4-8.
    80. Li, X.; Zhao, F.; Fu, J.; Yang, X.; Wang, J.; Liang, C.; Wu, M. Double-sided comb-like ZnO nanostructures and their derivative nanofern arrays grown by a facile metal hydrothermal oxidation route, Cryst. Growth Des.2009,9,409-413.
    81. Liu, J.; Guo, Z.; Meng, F.; Jia, Y.; Luo, T.; Li, M.; Liu, J. Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route:combined high gas sensing performance with enhanced optical properties, Cryst. Growth Des.2009,9,1716-1722.
    82. Yin, J.; Lu, Q.; Yu, Z.; Wang, J.; Pang, H.; Gao, F. Hierarchical ZnO nanorod-assembled hollow superstructures for catalytic and photoluminescence applications, Cryst. Growth Des. 2010,10,40-43.
    83. Wagner, R.; Ellis, W. High-energy limit of scattering cross sections, Appl. Phys. Lett.1964,4, 89-91.
    84. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes, Science 1996,274,1701-1703.
    85. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegel, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 1998,282, 1105-1107.
    86. Huang, M.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers, Science 2001,292,1897-1899.
    87. Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater.2001,13,113-116.
    88. Yu, D. P.; Xing, Y. J.; Hang, Q. L.; Yang, H. F.; Xu, J.; Xi, Z. H.; Feng, S. Q. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism, Physica E 2001,9,305-309.
    89. Chen, L. C.; Chang, S. W.; Chang, C. S.; Wen, C. Y.; Wu, J.-J.; Chen, Y. F. Y.; Huang, S.; Chen, K. H. Catalyst-free and controllable growth of SiCxNy nanorods, J. Phys. Chem. Solids 2001, 62,1567-1576.
    90. Wu, Y.; Xi, Z.; Zhang, G.; Zhang, J.; Guo, D. Fabrication of hierarchical zinc oxide nanostructures through multistage gas-phase reaction, Cryst. Growth Des.2008,8,2646-2651.
    91. Bunker, B. C.; Rieke, P. C.; Tarasevich, B. J.; Campbell, A. A.; Fryxell, G. E.; Graff, G. L. Song, L.; Liu, J.; Virden, J. W. Ceramic thin-film formation on functionalized interfaces through biomimetic processing, Science 1994,264,48-55.
    92. Niesen, T. P.; De Guire, M. R. Review:Deposition of ceramic thin films at low temperatures from aqueous solutions, J. Electroceram.2001,6,169-207.
    93. Addadi, L.; Moradian, J.; Shay, E.; Maroudas, N. G.; Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation:Relevance to biomineralization, Proc.Natl. Acad. Sci. USA 1987,84,2732-2736.
    94. Aizenberg, J.; Black, A.; Whitesides, G. Control of crystal nucleation by patterned self-assembled monolayers, Nature 1999,398,495-498.
    95. Rieke, P. C.; Marsh, B. D.; Wood, L. L.; Tarasevich, B, J.; Liu, J.; Song, L.; Fryxell, G. E. Aqueous solution deposition kinetics of iron oxyhyd'roxide on sulfonic acid terminated self-assembled monolayers, Langmuir 1995,11,318-326.
    96. Tarasevich, B. J.; Rieke, P. C.; Liu, J. Nucleation and growth of oriented ceramic films onto organic interfaces, Chem. Mater.1996,8,292-300.
    97. Vayssieres, L.; Keis, K.; Linquist, S.-E.; Hagfeldt, A. Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO, J. Phys. Chem. B 2001,105,3350-3352.
    98. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, J. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibres aligned on a Zn substrate, Small 2006,2,612-615.
    99. (a) Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold, Chem. Mater.2001,13, 508-512; (b) Wong, M.; Berenov, A.; Qi, X.; Kappers, M.; Barber, Z.; Illy, B.; Lockman, Z.; Ryan, M.; MacManus-Driscoll, J. Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil, Nanotechnology 2003,14,968-973.
    100. Yang, J. H.; Qiu, Y. F.; Yang, S. H. Studies of Electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine-alcohol mixtures. Cryst. Growth Des.2007,7,2562-2567.
    101. Yang, J. H.; Liu, G. M.; Lu, J.; Qiu, Y. F.; Yang, S. H. Electrochemical route to the synthesis of ultrathin ZnO nanorods/nanobelts arrays on zinc substrate. Appl. Phys. Lett.2007,90, 103109.
    102. Yang, M.; Yin, G.; Huang, Z.; Kang, Y.; Liao, X.; Wang, H. Preparation and optical properties of biomimic hierarchical ZnO column arrays, Cryst. Growth Des.2009,9,707-714.
    103. (a) Tian, Z.; Voigt, J. A.; Liu, B. M. J.; Mcdermott, M.J. Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns, J. Am. Chem. Soc..2002,124,12954-12955; (b) Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem. Int. Ed. 2003,42,3031-3034.
    104. Wong, E. M.; Searson, P. C. ZnO quantum particle thin films fabricated by electrophoretic deposition,Appl. Phys. Lett.1999,74,2939-2941.
    105. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Lett.2005,5, 1231-1236.
    106. Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Cygan, R. T.; Criscenti, L. J. Complex and oriented ZnO nanostructures, Nat. Mater.2003,2,821-826.
    107. Hirano, S.; Masuya, K.; Kuwabara, M. Multi-nucleation-based formation of oriented zinc oxide microcrystals and films in aqueous solutions, J. Phys. Chem. B 2004,108,4576-4578.
    108. (a) Zhang, T.; Dong, W.; Brewer, M. K.; Konar, S.; Njabon, R. N.; Tian, Z. R. Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites, J. Am. Chem. Soc.2006,128,10960-10968; (b) Zhang, T.; Dong, W.; Njabon, R. N.; Varadan V, K.; Tian, Z. R. Kinetically Probing Site-Specific Heterogeneous Nucleation and Hierarchical Growth of Nanobranches, J. Phys. Chem. C 2007,111,13691-13695.
    109. Li, H.; Xia, M.; Dai, G.; Yu, H.; Zhang, Q.; Pan, A.; Wang, T.; Wang, Y.; Zou, B. Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions, J. Phys. Chem. C 2008,112,17546-17553
    110. Yan, X.; Li, Z.; Zou, C.; Li, S.; Yang, J.; Chen, R.; Han, J.; Gao, W. Renucleation and sequential growth of ZnO complex nano/microstructure:from nano/microrod to ball-shaped cluster,J. Phys. Chem. C 2010,114,1436-1443
    111. Tian, Z.; Voigt, J.; Liu, J.; McKenzie, B.; Xu, H. Large oriented arrays and continuous films of TiO2-based nanotubes, J. Am. Chem Soc.2003,125,12384-12385.
    112. Dick, K. A.; Deppert, K.; Larsson, M.; Martensson, T.; Seifert, W.; Wallenberg, L. Samuelson, L. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events, Nat. Mater.2004,3,380-384.
    113. Gao, X.; Zheng, Z.; Zhu, H.; Pan, G.; Bao, J.; Wu, F.; Song, D. Rotor-like ZnO by epitaxial growth under hydrothermal conditions, Chem.Commun.2004,1428-1429.
    114. Yang, H. G.; Zeng, H. C. Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 nanocomposites, J. Am. Chem. Soc.2005,127, 270-278.
    115. Gao, X.; Li, X.; Yu, W. Flowerlike ZnO Nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex, J. Phys. Chem. B 2005,109,1155-1161.
    116. Liu, B.; Zeng, H. C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures, Langmuir 2004,20, 4196-4204.
    117. (a) Aizenberg, J. Patterned crystallization of calcite in vivo and in vitro, J. Cryst. Growth 2000,211,143-148; (b) Aizenberg, J. Crystallization in patterns:A bio-inspired approach, Adv. Mater.2004,16,1295-1302.
    118. Hsu, J. W. P.; Tian, Z. R.; Simmons, N. C.; Matzke, C.; Voigt, J.; Liu, J. Directed spatial organization of zinc oxide nanorods, Nano Lett.2005,5,83-86.
    119. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. Sequential nucleation and growth of complex nanostructured films, Adv. Funct. Mater.2006,16, 335-344.
    120. Zhang, W. X.; Yang, S. H. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates, Accounts Chem. Res.2009,42,1617-1627.
    121. Liu, S. T.; Takahashi, K.; Ayabe, M. Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:effects of Pd loading, Catal. Today 2003,87,247-253.
    122. Chang, Y.; Xu, J.; Zhang, Y.; Ma, S.; Xin, L.; Zhu, L.; Xu, C. Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples, J. Phys. Chem. C 2009,113, 18761-18767.
    123. Ammari, F.; Lamotte, J.; Touroude, R. An emergent catalytic material:Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde, J. Catal.2004,221,32-42.
    124. Zeng, H.; Liu, P.; Cai, W.; Yang, S.; Xu, X. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity, J. Phys. Chem. C 2008,112,19620-19624.
    125. Sakurai, H.; Haruta, M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides, Catal. Today 1996,29,361-365.
    126. Yang, L.; Ruan, W.; Jiang, X.; Zhao, B.; Xu, W.; Lombardi, J. R. Contribution of ZnO to charge-transfer induced surface-enhanced raman scattering in Au/ZnO/PATP assembly, J. Phys. Chem. C 2009,113,117-120.
    127. Sugawa, S.; Sayama, K.; Okabe, K.; Arakawa, H. Methanol Synthesis From CO2 and H2 Over Silver Catalyst, Energ. Convers. Manag.1995,36,665-668.
    128. Mo, L. Y.; Zheng, X. M.; Yeh, C. T. Selective production, of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures, Chem. Commun.2004,12,1426-1427.
    129. Breen, J. P.; Ross, J. R. H. Methanol reforming for fuel-cell applications:development of zirconia-containing Cu-Zn-Al catalysts, Catal. Today 1999,51,521-533.
    130. Zhang, Y.; Zhang, Z.; Lin, B.; Fu, Z.; Xu, J. Effects of Ag doping on the photoluminescence of ZnO films grown on Si substrates,J. Phys. Chem. B 2005,109,19200-19203.
    131. Lokhande, B. J.; Patil, P. S.; Uplane, M. D. Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique, Physica B 2001,302,59-63.
    132. Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater.2005,4,173-179.
    133. Sudakar, C.; Thakur, J. S.; Lawes, G.; Naik, R.; Naik, V. M. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films, Phys. Rev. B 2007; 75,054423.
    134. Sharma, P.; Gupta, A.; Rao, K. V.; Owens, F. J.; Sharma, R.; Ahuja, R.; Guillen, J. M. O.; Johansson, B.; Gehring, G. A. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, Nat. Mater.2003,2,673-677.
    135. Asmar, R. Al.; Juillaguet, S.; Ramonda, M.; Giani, A.; Combette, P.; Khoury, A.; Foucaran, A. Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique, J. Cryst. Growth,2005,275,512-520.
    136. Shen, G. Z.; Cho, J. H.; Yoo, J. K.; Yi, G. C.; Lee, C. J. Synthesis and optical properties of S-doped ZnO nanostructures:Nanonails and nanowires,J. Phys. Chem. B 2005,109, 5491-5496.
    137. Kang, H. S.; Du Ahn, B.; Kim, J. H.; Kim, G. H.; Lim, S. H.; Chang, H. W.; Lee, S. Y. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett.2006,88,202108.
    138. Song, Y. W.; Kim, K.; Ahn, J. P.; Jang, G. E.; Lee, S. Y. Physically processed Ag-doped ZnO nanowires for all-ZnO p-n diodes, Nanotechnology 2009,20,275606.
    139. Look, D. C.; Renlund, G. M.; Burgener, R. H.; Sizelove, J. R. As-doped p-type ZnO produced by an evaporation/sputtering process, Appl. Phys. Lett.2004,85,5269-5271.
    140. Georgekutty, R.; Seery, M.; Pillai, S. C. A highly efficient Ag-ZnO photocatalyst:synthesis, properties, and mechanism, J. Phys. Chem. C 2008,112,13563-13570.
    141. Alammar, T.; Mudring, A. V. Facile preparation of Ag/ZnO nanoparticles via photoreduction, J. Mater. Sci.2009,44,3218-3222.
    142. Lu, W.; Gao, S.; Wang, J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance,J. Phys. Chem. C 2008,112, 16792-16800.
    143. Deng, S.; Fan, H. M.; Zhang, X.; Loh, K. P.; Cheng, C. L.; Sow, C. H.; Foo, Y. L. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array, Nanotechnology 2009,20,175705.
    144. Grandjean, D.; Castricum, H. L.; Heuvel, J. C.; Weckhuysen, B. M. Highly mixed phases in ball-milled Cu/ZnO catalysts:an EXAFS and XANES study, J. Phys. Chem. B 2006,110, 16892-16901.
    145. Liu, Z. L.; Deng, J. C.; Deng, J. J.; Li, F. F. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method, Mater. Sci. Eng. B 2008,150,99-104.
    146. Wang, R. C.; Lin, H. Y. ZnO-CuO core-shell nanorods and CuO-nanoparticle-ZnO-nanorod integrated structures,Appl. Phys. A 2009,95,813-818.
    1. (a) Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks, Science 2001,291,630-633; (b) Hamley, I. W. Nanotechnology with soft materials, Angew. Chem. Int. Edn.2003,42,1692-1712; (c) Hu, J. Q.; Bando, Y.; Golberg D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures, Small 2005,1,95-99.
    2. (a) Tanori, J.; Pileni, M. P. Control of the shape of copper metallic particles by using a colloidal system as template, Langmuir 1997,13,639-646; (b) Li, M.; Schnablegger, H.; Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 1999,402,393-395.
    3. (a) Liu, B.; Zeng, H. C. Fabrication of ZnO "dandelions" via a modified kirkendall process, J. Am. Chem. Soc.2004,126,16744-16746; (b) Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S. Hierarchical shelled ZnO structures made of bunched nanowire arrays, Adv. Funct. Mater.2007,17,1303-1310; (c) Cho, S.; Jang, J. W.; Jung, S. H.; Lee, B. R.; Oh, E.; Lee, K. H. Precursor Effects of Citric Acid and Citrates on ZnO Crystal Formation, Langmuir 2009,25,3825-3831; (d) Xu, L. P.; Hu, Y. L.; Pelligra, C.; Chen, C. H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S. L. ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater.2009, 21,2875-2885.
    4. Gao, P. X.; Lee, J. L.; Wang, Z. L. Multicolored ZnO nanowire architectures on trenched silicon substrates,J. Phys. Chem. C 2007,111,13763-13769.
    5. Umar, A.; Lee, S.; Im, Y H.; Hahn, Y. B. Flower-shaped ZnO nanostructures obtained by cyclic feeding chemical vapour deposition:structural and optical properties, Nanotechnology 2005,16, 2462-2468.
    6. Ramgir, N. S.; Mulla, I. S.; Pillai, V. K. Micropencils and microhexagonal cones of ZnO, J. Phys. Chem. B 2006,110,3995-4001.
    7. Jung, S.; Oh, E.; Lee, K.; Yang, Y.; Park, C. G.; Park, W.; Jeong, S. Sonochemical preparation of shape-selective ZnO nanostructures, Cryst. Growth Des.2008,8,265-269.
    8. Zhang, J.; Sun, L.; Yin, J.; Su, H.; Liao, C.; Yan, C. Control of ZnO morphology via a simple solution route, Chem. Mater.2002,14,4172-4177.
    9. Kim, Y. J.; Yoo, J. Y.; Kwon, B. H.; Hong, Y. J.; Lee, C. H.; Yi, G. C. Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application, Nanotechnology 2008,19,315202.
    10. (a) Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal Process, J. Phys. Chem. B 2004,108,3955-3958; (b) Gao, X.; Li, X.; Yu, W. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex, J. Phys.Chem. B 2005,109,1155-1161; (c) Pal, U.; Santiago, P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process, J. Phys. Chem. B 2005,109,15317-15321. (d) Jiang, H.; Hu, J Q.; Gu, F.; Li, C. Z. Stable field emission performance from urchin-like ZnO nanostructures, Nanotechnology 2009,20,055706;
    11. Choppaliw, U.; Gorman, B. P. Controlling the morphology of polymeric precursor-derived ZnO flower-like structures, J. Am. Ceram. Soc.2007,90,433-442.
    12. Albercht, J. D.; Ruden, P. P.; Limpijumnong, S.; Lambrecht, W. R. L.; Brennan, K. F. High field electron transport properties of bulk ZnO, J Appl Phys,1999,86,6864-6867.
    13. (a) Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 2000,289,751-754; (b) Penn, R. L.; Banfield, J. F. Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals, Science 1998,281,969-971.
    14. (a) Hu, J. Q.; Li, Q.; Wong, N. B.; Lee, C. S.; Lee, S. T. Synthesis of uniform hexagonal prismatic ZnO whiskers, Chem. Mater.2002,14,1216-1219; (b) Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P. D. Solution-grown zinc oxide nanowires, Inorg. Chem.2006,45, 7535-7543; (c) Liao, X.; Zhang, X. Zinc oxide nanostructures and their core-shell luminescence properties, J. Phys. Chem. C 2007,111,9081-9085.
    15. Davide, P. C.; Andreas, K.; Horst, W. Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction, J. Phys. Chem. B 2005,109,2638-2644.
    16. Wang, Z.; Qian, X. F.; Yin, J.; Zhu, Z. K. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route, Langmuir 2004,20,3441-3448
    17. Wen, B. M.; Huang, Y. Z.; Boland, J. J. Controllable growth of ZnO nanostructures by a simple solvothermal process,J. Phys. Chem. C 2008,112,106-111.
    18. (a) Saito, N.; Haneda, H.; Seo, W. S.; Koumoto, K. Selective Deposition of ZnF(OH) on Self-Assembled Monolayers in Zn-NH4F Aqueous Solutions for Micropatterning of Zinc Oxide, Langmuir 2001,17,1461-1469; (b) Wu, C. L.; Qiao, X. L.; Luo, L. L.; Li, H. J. Synthesis of ZnO flowers and their photoluminescence properties, Mater. Res. Bull.2008,43, 1883-1891.
    19. Zhang, H.; Yang, D. R.; Ma, X. Y.; Ji, Y. J.; Xu, J.; Que, D. L. Hydrothermal synthesis of flower-like Bi2S3 with nanorods in the diameter region of 30 nm, Nanotechnology 2004,15, 622.
    20. Zhang, J.; Sun, L.; Liao, C.; Yan, C. A simple route towards tubular ZnO, Chem. Commun. 2002,262-263.
    21. Qian, H.; Yu, S.; Gong, J.; Luo, L.; Wen, L. Growth of ZnO crystals with branched spindles and prismatic whiskers from Zn3(OH)2V2O7·H2O nanosheets by a hydrothermal route, Cryst. Growth Des.2005,5,935-939.
    22. (a) Monticone, S.; Tufen, R.; Kanaev, A. V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles, J. Phys. Chem. B 1998,102,2854-2862; (b) Wong, E. M.; Searson, P. C. ZnO quantum particle thin films fabricated by electrophoretic deposition, Appl. Phys. Lett.1999,74,2939-2941; (c) Jiang, H.; Hu, J. Q.; Gu, F.; Li, C. Z. Stable field emission performance from urchin-like ZnO nanostructures, Nanotechnology 2009, 20,055706.
    23. Srikant, V.; Clarke, D. R. On the optical band gap of zinc oxide, J. Appl. Phys.1998,83, 5447-5451..
    24. Jin, B. J.; Bae, S. H.; Lee, S. Y.; Im, S. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater. Sci. Eng., B 2000,71,301-305.
    25. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Ganade, B. E. Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys.1996, 79,7983-7990.
    26. Dingle, R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting Zinc Oxide, Phys. Rev. Lett.1969,23,579-581.
    27. Li, Y.; Cheng, G. S.; Zhang, L. D. Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes,J. Mater. Res.2000,15,2305-2308.
    28. Masuda, Y.; Kinoshita, N.; Sato, F.; Koumoto, K. Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals, Cryst. Growth Des.2006,6,75-78.
    29. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett.2004,84, 3654-3656.
    30. Li, Q. H.; Liang, Y. X.; Wan, Q.; Wang, T. H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett.2004,85,6389-6391.
    31.彭超才,刘洪江,徐甲强,李明星.棒状氧化锌的“绿色”水热合成及其气敏性.电子元件与材料2008,27,27-29.
    32. Xu, J. Q.; Chen, Y. P.; Chen, D. Y.; Shen, J. N. Hydrothermal synthesis and gas.sensing characters of ZnO nanorods, Sens. Actuat. B 2006,113,526-531.
    33.王晶晶,郭太良.四针状纳米氧化锌的乙醇气敏性能的研究.仪表技术与传感器.2008,1, 8-10.
    34. Zhang, Y.; Xu, J. Q.; Xiang, Q.; Li, H.; Pan, Q. Y.; Xu, P. C. Brush-like hierarchical ZnO nanostructures:synthesis, photoluminescence and gas sensor properties, J. Phys. Chem. C 2009,113,3430-3435.
    35. Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nariowire devices, Nano Lett.2004,4,1919-1924.
    36.由丽梅,霍丽华,程晓丽,等.菜花状纳米氧化锌的溶剂热合成及气敏性能研究,无机化学学报,2008,24,1035-1039.
    37. Prabakar, K.; Kim, C.; Lee, C. UV, violet and blue-green luminescence from RF sputter deposited ZnO:Al thin films, Cryst. Res. Technol.2005,40,1150-1154.
    38. Nadaraah, A.; Word, R. C.; Meiss, J.; Konekamp, R. Flexible inorganic nanowire light-emitting diode, Nano Lett.2008,8,534-537.
    39. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology:The case for thin-film solar cells, Science 1999,285,692-698.
    40. Thundat, T. Flexible approach pays off, Nat. Nanotechnol.2008,3,133-134.
    41. Polarz, S.; Roy, A.; Lehmann, M.; Driess, M.; Kruis, F. E.; Hoffmann, A.; Zimmer, P. Structure-property-function relationships in nanoscale oxide sensors:A case study based on zinc oxide, Adv. Funct. Mater.2007,17,1385-1391.
    42. Ando, E.; Miyazaki, M. Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment, Thin Solid Films 2008,516,4574-4577.
    43. Hsu, C. W.; Cheng, T. C.; Huang, W. H.; Wu, J. S.; Cheng, C. C.; Cheng, K. W.; Huang, S. C. Relation between the plasma characteristics and physical properties of functional zinc oxide thin film prepared by radio frequency magnetron sputtering process, Thin Solid Films 2010, 518,1953-1957.
    44. Fang, Z. B.; Yan, Z. J.; Tan, Y. S.; Liu, X. Q.; Wang, Y. Y. Influence of post-annealing treatment on the structure properties of ZnO films, Appl. Surf. Sci.2005,24,303-308.
    45. Shinde, V. R.; Lokhande, C. D.; Mane, R. S.; Han, S. H. Hydrophobic and textured ZnO films deposited by chemical bath deposition:annealing effect, Appl. Surf. Sci.2005,245,407-413.
    46. Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films, J. Phys. Chem. B 2001,105,1984-1900.
    47. Shan, F. K.; Yu, Y. S. Band gap energy of pure and Al-doped ZnO thin films, J. Eur. Ceram. Soc.2004,24,1869-1972.
    48. Tuzemen, E. S.; Eker, S.; Kavak, H.; Esen, R. Dependence of film thickness on the structural and optical properties of ZnO thin films, Appl. Surf Sci.2009,255,6195-6200.
    49. Wu, C. C.; Wuu, D. S.; Lin, P. R.; Chen, T. N.; Horng, R. H. Repeated growing and annealing towards ZnO film by metal-organic CVD, Chem. Vap. Deposition 2009,15,234-241.
    50. Wang, J.; Polizzi, E.; Ghosh, A.; Datta, S.; Lundstrom, M. Theoretical investigation of surface roughness scattering in silicon nanowire transistors, Appl. Phys. Lett.2005,87,043101.
    51. Hastas, N. A.; Dimitriadis, C. A.; Kamarinos, G. Effect of interface roughness on gate bias instability of polycrystalline silicon thin-film transistors,J Appl. Phys.2002,92,4741-4745.
    52. Lieber, C. M. One-dimensional nanostructures:Chemistry, physics and applications, Solid State Commun.1998,107,607-616.
    53. Calarco, R.; Marso, M.; Richter, T.; Akanat, A. I.; Meijers, R.; Hart, A. D.; Stoica, T.; Luth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires, Nano Lett.2005,5, 981-984.
    54. Elfstrom, N.; Juhasz, R.; Sychugov,I.; Engfeldt, T.; Karlstrom, A. E.; Linnros, J. Surface charge sensitivity of silicon nanowires:Size dependence, Nano Lett.2007,7,2608-2612.
    55. Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett.2006,96,075505.
    1. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z. R.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films, Adv. Funct. Mater.2006, 16,335-344.
    2. Zhang, J.; Sun, L.; Yin, J.; Su, H.; Liao, C.; Yan, C. Control of ZnO Morphology via a Simple Solution Route, Chem. Mater.2002,14,4172-4177.
    3. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures:Synthesis, characterization, and applications, Adv. Mater. 2003,15,353-389.
    4. Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc.2000,122,12700-12706.
    5. Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system,J. Am. Chem. Soc.2001,123,5150-5151.
    6. Lao, Y. L.; Wen, J. G.; Ren, Z. F. Hierarchical ZnO nanostructures, Nano Lett.2002,2, 1287-1291.
    7. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater.2003,2,382-385.
    8. Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events, Nat. Mater.2004,3,380-384.
    9. Yang, R. S.; Chueh, Y. L.; Morber, J. R.; Snyder, R.; Chou, L. J.; Wang, Z. L. Single-crystalline branched zinc phosphide nanostructures:Synthesis, properties, and optoelectronic devices, Nano Lett.2007,7,269-275.
    10. (a) Hemmings, E. Zinc rich coatings v galvanizing-what are the facts? Surf. Coat. Aust.2005, 42,12-18; (b) Thomas, A. Waterborne silicates as coatings and construction materials part 1: coatings, Surf. Coat. Aust.2009,46,10-18.
    11. Blasse, G.; Grabai, B. C. Luminescent Materials; Springer-Verlag:Berlin,1994
    12. (a) Stel, T. J.; Nikol, H.; Ronda, C. New developments in the field of luminescent materials for lighting and displays, Angew. Chem. Int. Ed.1998,37,3084-3103; (b) Stel, T. J.; Nikol, H. Optimization of luminescent materials for plasma display panels, Adv. Mater.2000,12, 527-530. (c) Zhang, Q. Y.; Pita, K.; Kam, C. H. Sol-gel derived zinc silicate phosphor films for full-color display applications,J. Phys. Chem. Solids 2003,64,333-338
    13. Veremeichik, T. F.; Zharikov, E. V.; Subbotin, K. A. New laser crystals of complex oxides doped with ions of d elements with variable valence and different structural localization. Review, Cryst. Rep.2003,48,974-988.
    14. Gerner, P.; Fuhrer, C.; Reinhard, C.; Gudel, H. U. Near-infrared to visible photon upconversion in Mn2+ and Yb3+ containing materials, J. Alloys Compd.2004,380,39-44.
    15. (a) Ouyang, X.; Kitai, A. H.; Xiao, T. Electroluminescence of the oxide thin film phosphors Zn2Si04 and Y2Si05,J. Appl. Phys.1996,79,3229-3234; (b) Horng, R. H.; Wuu, D. S.; Yu, J. W. An electroluminescent device using multi-barrier Y2O3 layers incorporated into ZnS:Mn phosphor layer, Mater. Chem. Phys.1997,51,11-14.
    16. Breuer, K.; Teles, J. H.; Demuth, D.; Hibst, H.; Schafer, A.; Brode, S.; Domgorgen, H. Zinc silicates:Very efficient heterogeneous catalysts for the addition of primary alcohols to alkynes and allenes, Angew. Chem. Int. Ed.1999,38,1401-1405.
    17. Wang, X.; Summers, C. J.; Wang, Z. L. Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn2Si04, Adv. Mater.2004,16,1215-1218.
    18. Guo, Y.; Ohsato, H.; Kakimoto, K.-I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency,J. Eur. Ceram. Soc.2006,26, 1827-1830.
    19. Minami, T.; Miyata, T.; Takata, S.; Fukuda, I. High-Luminance green Zn2Si04:Mn thin-film electroluminescent devices using an insulating BaTiO3 ceramic sheet, Jpn. J. Appl. Phys.1991, 30, L117-L119.
    20. Kang, Y. C.; Park, S. B. Zn2Si04:Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator, Mater. Res. Bull.2000,35,1143-1151.
    21. (a) Lin, J.; Sanger, D. U.; Mennig, M.; Barner, K. Sol-gel deposition and characterization of Mn2+ -doped silicate phosphor films, Thin Solid Films 2000,360,39-45; (b) Copeland, T. S.; Lee, B.I.; Qi, J.; Elrod, A. K. Synthesis and luminescent properties of Mn2+ -doped zinc silicate phosphors by sol-gel methods, J. Lumin.2002,97,168-173; (c) Ji, Z.; Kun, L.; Song, Y.; Ye, Z. Fabrication and characterization of Mn-doped zinc silicate films on silicon wafer, J. Cryst. Growth 2003,255,353-356.
    22. Su, K..; Tilley, T. D.; Sailor, M. J. Molecular and polymer precursor routes to manganese-doped zinc orthosilicate phosphors,J. Am. Chem. Soc.1996,118,3459-3468.
    23. (a) Ahmadi, T. S.; Haase, M.; Weller, H. Low-temperature synthesis of pure and Mn-doped willemite phosphor (Zn2SiO4:Mn) in aqueous medium, Mater. Res. Bull.2000,35,1869-1879; (b) Wang, H.; Zhuang, J.; Peng, Q.; Li, Y. A water-ethanol mixed-solution hydrothermal route to silicates nanowires,J. Solid State Chem.2005,178,2332-2338;
    24. Roy, A.; Polarz, S.; Rabe, S.; Rellinghaus, B.; Zahres, H.; Kruis, F. E.; Driess, M. First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor, Chem. Eur.J.2004,10,1565-1575.
    25. Zeng, J. H.; Fu, H. L.; Lou, T. I.; Yu, Y.; Sun, Y. H.; Li, D. Y. Precursor, base concentration and solvent behavior on the formation of zinc silicate, Mater. Res. Bull.2009,44,1106-1110.
    26. Wan, J. X.; Chen, X. Y.; Wang, Z. H.; Mu, L.; Qian, Y. T. One-dimensional rice-like Mn-doped Zn2SiO4:Preparation, characterization, luminescent properties and its stability, J. Cryst. Growth 2005,280,239-243.
    27. Xiong, L.; Shi, J.; Gu, J., Shen, W.; Dong, X.; Chen, H.; Zhang, L.; Gao, J.; Ruan, M. Directed growth of well-aligned zinc silicate nanowires along the channels of surfactant-assembled mesoporous silica, Small 2005,1,1044-1047.
    28. Chouillet, C.; Villain, F.; Kermarec, M.; Lauron-Pernot, H.; Louis, C. Relevance of the drying step in the preparation by impregnation of Zn/SiO2 supported catalysts, J. Phys. Chem. B 2003, 107,3565-3575.
    29.张华,厦门大学硕士论文,两种ZnO基化合物纳米结构研究。2008.
    30. Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films, J. Phys. Chem. B 2001,105,1984-1990.
    31. Wu, X.; Jiang, P.; Cai, W.; Bai, X. D.; Gao, P.; Xie, S. S. Hierarchical ZnO micro-/nano-structure film, Adv. Funt. Mater.2008,10,476-481.
    32. Gao, X. F.; Jiang, L. Water-repellent legs of water striders, Nature 2004,432,36-36.
    33. Mecerreyes, D.; Alvaro, V.; Cantero, I.; Bengoetxea, M.; Calvo, P. A.; Grande, H.; Rodriguez, J.; Pomposo, J. A. Low surface energy conducting polypyrrole doped with a fluorinated counterion, Adv. Mater.2002,14,749-752.
    1. Sberveglieri, G. editor. Gas sensors:principles, operation and developments. Boston:Kluwer; 1992.
    2. Mandelis, A.; Christofides, C. Physics, chemistry and technology of solid state gas sensor devices. New York:Wiley-Interscience; 1993.
    3. Appell, D. Nanotechnology:wired for success, Nature 2002,419,553-555.
    4. Samuelson, L. Self-forming nanoscale devices, Mater. Today 2003,6,22-31.
    5. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 2001,409,66-69.
    6. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 2001,293,1289-1292.
    7. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures:synthesis, characterization, and applications, Adv. Mater. 2003,15,353-589.
    8. Yamazoe, N. New approaches for improving semiconductor gas sensors, Sensors Actual. B 1991,5,7-19.
    9. Wagh, M. S.; Patil, L. A.; Seth, T.; Amalnerkar, D. P. Surface cupricate SnO2-ZnO thick films as a H2S gas Sensor, Mater. Chem. Phys.2004,84,228-233.
    10. Bie, L. J.; Yan, X. N.; Yin, J.; Duan, Y. Q.; Yuan, Z. H. Nanopillar ZnO gas sensor for hydrogen and ethanol, Sensors Actuat. B 2007,126,604-608.
    11. Hsueh, T. J.; Hsu, C. L.; Chang, S. J.; Chen, I. C. Laterally grown ZnO nanowire ethanol gas sensors, Sensors Actuat. B 2007,126, 473-477.
    12. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett.2004,84,3654-3656.
    13. Kang, B. S.; Heo, Y. W.; Tien, L. C.; Norton, D. P.; Ren, F.; Gila, B. P. Hydrogen and ozone gas sensing using multiple ZnO nanorods, Appl. Phys. A 2005,80,1029-1032.
    14. Chu, X. F.; Jiang, D. L.; Djurisic, A. B.; Yu, H. L. Gas-sensing properties of thick film based on ZnO nano-tetrapods, Chem. Phys. Lett.2005,401,426-429.
    15. Xu, J.; Chen, Y.; Li, Y.; Shen, J. Gas sensing properties of ZnO nanorods prepared by hydrothermal method, J. Mater. Sci.2005,40,2919-2921.
    16. Wang, C.; Chu, X.; Wu, M. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors Actual. B 2006,113,320-323.
    17. Parthangal, P. M.; Cavicchi, R. E.; Zachariah, M. R. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensing architecture, Nanotechology 2006,17,3786-3790.
    18. Jing, Z.; Zhan, J. Fabrication and gas-sensing properties of porous ZnO nanoplates, Adv. Mater. 2008,20,4547-4551.
    19. Zhang, Y.; Xu, J.; Xiang, Q.; Li, H.; Pan, Q.; Xu, P. Brush-like hierarchical ZnO nanostructures:synthesis, photoluminescence and gas sensor properties, J. Phys. Chem. C 2009,113,3430-3435.
    20. Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett. 2004,4,1919-1924.
    1. Lewis, L. N. Chemical catalysis by colloids and clusters, Chem. Rev.1993,93,2693-2730.
    2. (a) Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes, Science 2001,294, 137-141; (b) Xue, X.J.; Wang, F.; Liu, X. G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates, J. Am. Chem. Soc.2008,130, 3244-3245.
    3. (a) Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics-A route to nanoscale optical devices, Adv. Mater.2001,13,1501-1505; (b) Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc.2008,130,5642-5643.
    4. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B 2002,106,7729-7744.
    5. Murray, C. B.; Sun, S.; Doyle, H.; Betley, T. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices, Mater. Res. Soc. Bull.2001,26,
    985-991.
    6. Pileni, M.-P. Magnetic fluids:fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater.2001,11,323-336.
    7. (a) Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots, Science 1996,271, 933-937; (b) Klabunde, K. J. Nanoscale Materials in Chemistry; Wiley-Interscience:New York, 2001; (c) Schmid, G. Nanoparticles:From Theory to Application; Wiley-VCH:Weinheim, 2004.
    8. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles, Science 2002, 298,2176-2179.
    9. Albanesi, E. A.; Blanca, E. L. P. Y.; Petukhov, A. G. Calculated optical spectra of Ⅳ-Ⅵ semiconductors PbS, PbSe and PbTe, Comput. Mater. Sci.2005,32,85-95.
    10. (a) Zhu, Y. C.; Bando Y. Large scale preparation of zinc nanosheets by thermochemical reduction of ZnS powders, Chem. Phys. Lett.2003,372,640-644; (b) Zhao, J. W.; Ye, C. H.; Fang, X. S.; Yan, P.; Wang, Z. Y.; Zhang, L. D. Synthesis of single crystalline cadmium nanosheets by a thermal decomposition method, J. Cryst. Growth 2005,277,445-449.
    11. Nimtz, G.; Schlicht, B.; Dornhaus, B. Narrow Gap Semiconductors:Springer Tracts in Modern Physics; Spinger:New York,1983.
    12. Feit, Z.; McDonald, M.; Woods, R. J.; Archambauld, V.; Mak, P. Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers, Appl. Phys. Lett. 1996,66,738-740.
    13. (a) Li, Q.; Ding, Y.; Shao, M. W.; Wu, J.; Yu, G. H.; Qian, Y. T. Sonochemical synthesis of nanocrystalline lead chalcogenides:PbE (E=S, Se, Te), Mater. Res. Bull.2003,38,539-543; (b) Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M. S.; Berger, S. Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes, Nano Lett.2003, 3,857-862; (c) Wang, W. Z.; Poudel, B.; Wang, D. Z.; Ren, Z. F. Synthesis of PbTe Nanoboxes Using a Solvothermal Technique, Adv. Mater.2005,17,2110-2114.
    14. (a) Iijima, S.; Ichishi, T. Structural instability of ultrafine particles of metals, Phys. Rev. Lett. 1986,56,616-619;.(b) Dahmen, U.; Xiao, S. Q.; Paciornik, S.; Johnson, E.; Johansen, A. Magic-size equilibrium shapes of nanoscale Pb inclusions in Al, Phys. Rev. Lett.1997,78, 471-474; (c) Hu, J. Q.; Bando, Y.; Zhan, J. H.; Golberg, D. Sn-filled single-crystalline wurtzite-type ZnS nanotubes, Angew. Chem., Int. Ed.2004,43,4606-4609; (d) Hu, J. Q.; Bando, Y.; Zhan, J. H.; Golberg, D. Fabrication of silica-shielded Ga-ZnS metal-semiconductor nanowire heterojunctions, Adv. Mater.2005,17,1964-1969.
    15. Lereah, Y.; Kofman, R.; Penisson, J. M.; Deutscher, G.; Cheysssac, P.; David, T. B.; Bourret, A. Time-resolved electron microscopy studies of the structure of nanoparticles and their melting, Philos. Mag. B 2001,81,1801-1819.
    16. Tamou, Y.; Tanaka, S. Formation and coalescence of tungsten nanoparticles under electron beam irradiation, Nanostruct. Mater.1999,12,123-126.
    17. Kim, S. H.; Choi, Y. S.; Kang, K.; Yang, S. I. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM, J. Alloy. Compd.2007,427,330-332.
    18. (a) Pan, Z. W.; Dai, Z. R.; Ma, C.; Wang, Z. L. Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires, J. Am. Chem. Soc.2002,124, 1817-1822; (b) Hu, J. Q.; Bando, Y.; Zhan, J. H.; Yuan, X. L.; Sekiguchi, T.; Golberg, D. Self-assembly of SiO2 nanowires and Si microwires into hierarchical heterostructures on a large scale, Adv. Mater.2005,17,971-975.
    19. Hobbs, L. W. Introduction to Analytical Electron Microscopy; Hren, J. J.; Joseph, G.I.; Vavid, J. C.; Plenum Press:New York,1977; p 437.
    20. (a) Fisher, S. B. Temperature rise in electron irradiated foils, Radial. Eff.1970,5,239-243; (b) Liu, J.; Barbero, C. J.; Corbett, J. W. An in situ transmission electron microscopy study of electron-beam-induced amorphous-to-crystalline transformation of Al2O3 films on silicon, J. Appl. Phys.1993,73,5272-5273; (c) Liu, L.-C.; Risbud, S. H. Real-time hot-stage high-voltage transmission electron microscopy precipitation of CdS nanocrystals in glasses: Experiment and theoretical analysis, J. Appl. Phys.1994,76,4576-4581.
    21. Liu, Z. W.; Bando, Y. A novel method for preparing copper nanorods and nanowires, Adv. Mater.2003,15,303-305.
    22. Yokota, T.; Murayama, M.; Howe, J. M. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation, Phys. Rev. Lett.2003,91,265504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700