化学驱提高原油采收率的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advance in improving oil recovery by chemical flooding
  • 作者:刘培松 ; 李小红 ; 赵梦云 ; 张治军 ; 蔡天聪
  • 英文作者:LIU Peisong;LI Xiaohong;ZHAO Mengyun;ZHANG Zhijun;CAI Tiancong;Engineering Research Center for Nanomaterials, Henan University;Exploration & Production Research Institute,SINPOEC;Henan Wangwu Nano Technology Co., Ltd;
  • 关键词:化学驱 ; 采收率 ; 纳米材料 ; 作用机制
  • 英文关键词:chemical flooding;;oil recovery;;nanomaterials;;mechanisms
  • 中文刊名:化学研究
  • 英文刊名:Chemical Research
  • 机构:河南大学纳米材料工程研究中心;中国石化石油勘探开发研究院;河南王屋纳米科技有限责任公司;
  • 出版日期:2019-01-25
  • 出版单位:化学研究
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金(21571188);; 河南高校创新团队(17IRTSTHN004)
  • 语种:中文;
  • 页:5-16
  • 页数:12
  • CN:41-1083/O6
  • ISSN:1008-1011
  • 分类号:TE357.46
摘要
注化学剂驱油是我国油田现用提高采收率的主要技术手段,本文以影响原油采收率的主要因素为切入点,综述了表面活性剂、聚合物、三元/二元复合驱等常规三次采油技术的应用研究进展,重点总结了以功能性纳米材料为主剂的纳米驱油技术最新研究成果,阐述了其在提高原油采收率中的作用机制.最后,针对基于功能性纳米材料的驱油技术,探讨了该研究领域亟待解决的问题和面临的挑战,并对该领域的发展趋势给予了展望.
        Chemical flooding is the main technique for improving oil recovery in current oil fields of China. With main effect factors of oil recovery as the entry points, we review the research advances of the conventional tertiary oil recovery techniques using different chemical flooding, such as surfactant, polymer and SP/ASP. It focus summarizes the latest progress of nanotechnology based on functional nanomaterials flooding, elaborating its EOR mechanism in enhancing oil recovery. Finally, aiming at optimizing the functional materials based flooding technology, some urgent problems and challenges in the research field are discussed, and the trend of development is proposed as well.
引文
[1] 罗佐县. 原油对外依存度增长并非来势汹汹[J]. 中国石油石化,2018, 8: 35. LUO Z X. The growth of crude oil’s external dependence is not fierce [J]. China Petrochem, 2018, 8: 35.
    [2] 郑宁来. 我国油气资源大幅增长[J]. 石油炼制与化工, 2016(10): 92. ZHENG N L. China’s oil and gas resources have grown substantially [J]. Petroleum Processing and Petrochemicals, 2016(10): 92.
    [3] 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668. YUAN S Y, WANG Q. New progress and prospect of oilfields development technologies in China [J]. Petroleum Exploration and Development, 2018, 45(4): 657-668.
    [4] 王宗礼, 娄钰, 潘继平. 中国油气资源勘探开发现状与发展前景[J]. 国际石油经济, 2017, 25(3): 1-6. WANG Z L, LOU Y, PAN J P. China's oil & gas resources exploration and development and its prospect [J]. International Petroleum Economics, 2017, 25(3): 1-6.
    [5] 白方正. 我国石油天然气开发技术的现状与趋势[J]. 石化技术, 2018(2): 213. BAI F Z. Current status and trends of China’s oil and gas development technology [J]. Petrochemical Industry Technology, 2018(2): 213.
    [6] 周丛丛, 孙洪国, 王晓冬. 基于微观孔隙结构参数的水驱采收率预测方法[J]. 特种油气藏, 2009, 16(6): 61-63. ZHOU C C, SUN H G, WANG X D. A prediction method of waterflood recovery factor based on microscopic pore structure parameters [J]. Special Oil & Gas Reservoirs, 2009, 16(6): 61-63.
    [7] LAI J, WANG G W, CHEN M, et al. Pore structures evaluation of low permeability clastic reservoirs based on petrophysical facies: A case study on Chang 8 reservoir in the Jiyuan region, Ordos Basin [J]. Petroleum Exploration and Development, 2013, 40(5): 606-614.
    [8] 刘怀珠, 李良川, 孙桂玲, 等. 油藏润湿性对提高原油采收率的影响[J]. 化学工程与装备, 2009(10): 74-76. LIU H Z, LI L C, SUN G L, et al. Effect of reservoir wettability on enhanced oil recovery [J]. Fujian Chemical Industry, 2009(10): 74-76.
    [9] STRAND S, PUNTERVOLD T, AUSTAD T. Water based EOR from clastic oil reservoirs by wettability alteration: A review of chemical aspects [J]. Journal of Petroleum Science and Engineering, 2016, 146: 1079-1091.
    [10] SHARIATPANAHI S F, HOPKINS P, AKSULU H, et al. Water based EOR by wettability alteration in dolomite [J]. Energy & Fuels, 2016, 30(1): 180-187.
    [11] 赵芳, 熊伟, 高树生, 等. 已开发油田水驱评价体系及波及系数计算方法综述[J]. 渗流力学进展, 2012, 2(2): 9-15. ZHAO F, XIONG W, GAO S S, et al. Reviews on evaluating waterflooding efficiency on developed field and calculation of wweep efficiency [J]. Advances in Porous Flow, 2012, 2(2): 9-15.
    [12] 李斌, 郑家朋, 张波, 等. 论提高原油采收率通用措施的理论依据[J]. 石油科技论坛, 2010, 3: 29-34. LI B, ZHENG J P, ZHANG B, etal. On theoretical basis of general EOR measures[J]. Oil Forum, 2010, 3: 29-34.
    [13] 张文静, 谷建伟, 赵金水. 通过扩大波及系数提高采收率的技术展望[J]. 内蒙古石油化工, 2013(18): 90-92. ZHANG W J, GU J W, ZHAO J S. Technical prospects for enhancing oil recovery by expanding the sweep coefficient [J]. Inner Mongolia Petrochemical Industry, 2013(18): 90-92.
    [14] ALVAREZ J O, SCHECHTER D S. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016, 43(5): 764-771. ALVAREZ J O, SCHECHTER D S. Application of wettability alteration in the exploitation of unconventional liquid resources [J]. Petroleum Exploration and Development, 2016, 43(5): 764-771.
    [15] ZHAO J, WEN D S. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery [J]. RSC Advances, 2017, 7(66): 41391-41398.
    [16] NAZARI M R, BAHRAMIAN A, FAKHROUEIAN Z, et al. Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks [J]. Energy & Fuels, 2015, 29(4): 2111-2119.
    [17] KHAKSARMANSHAD A K, REZAEI M, SIAMAKMORADI, et al. Wettability alteration and interfacial tension(IFT) reduction in enhanced oil recovery(EOR) process with ionic liquid flooding [J]. Journal of Molecular Liquids, 2017, 248: 153-162.
    [18] BOTTO J, FUCHS S J, FOUKE B W, et al. Effects of mineral surface properties on supercritical CO2 wettability in a siliciclastic reservoir [J]. Energy & Fuels, 2017, 31(5): 5275-5285.
    [19] 彭宝亮, 丁彬, 罗健辉, 等. 纳米化学驱油技术研究进展及前景[M]//姚军. 中国石油学会第九届青年学术年会. 中国石油大学出版社. 2015: 482-488. PENG B L, DING B, LUO J H, et al. Research progress and prospects of nano-chemical flooding technology[M]// YAO J. The 9th Annual Youth Academic Conference of China Petroleum Institute. China University of Petroleum Press, 2015: 482-488.
    [20] KAMAL M S, HUSSEIN I A, SULTAN A S. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications [J]. Energy & Fuels, 2017, 31(8): 7701-7720.
    [21] RAFFA P, BROEKHUIS A A, PICCHIONI F. Polymeric surfactants for enhanced oil recovery: A review [J]. Journal of Petroleum Science and Engineering, 2016, 145: 723-733.
    [22] SHARMA T, SANGWAI J S. Silica nanofluids in polyacrylamide with and without surfactant: Viscosity, surface tension, and interfacial tension with liquid paraffin [J]. Journal of Petroleum Science and Engineering, 2017, 152: 575-585.
    [23] GBADAMOSI A O, JUNIN R, MANAN M A, et al. Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery [J]. Journal of Industrial and Engineering Chemistry, 2018.
    [24] PU W, SHEN C, WEI B, et al. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery(EOR) from flask to field [J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 1-11.
    [25] KAMAL M S, SULTAN A S, AL-MUBAIYEDH U A, et al. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems [J]. Polymer Reviews, 2015, 55(3): 491-530.
    [26] 吕鑫, 张健, 姜伟. 聚合物/表面活性剂二元复合驱研究进展[J]. 西南石油大学学报(自然科学版), 2008, 30(3): 127-130. LV X, ZHANG J, JIANG W. Progress in polymer/surfactant binary combination drive [J]. Journal of Southweat Petroleum University, 2008, 30(3): 127-130.
    [27] 朱友益, 张翼, 牛佳玲, 等. 无碱表面活性剂-聚合物复合驱技术研究进展[J]. 石油勘探与开发, 2012, 39(3): 346-251. ZHU Y Y, ZHANG Y, NIU J L, etal. The progress in the alkali-free surfactant-polymer combination flooding technique [J]. Petroleum Exploration and Development, 2012, 39(3): 346-251.
    [28] OLAJIRE A A. Review of ASP EOR(alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges [J]. Energy, 2014, 77: 963-982.
    [29] LAKATOS I, LAKATOS-SZABO G, SZENTES G. Revival of ggreen conformance and IOR/EOR technologies: Nanosilica aided silicate systems - a review [M]. SPE International Conference and Exhibition on Formation Damage Control. 2018.
    [30] TAGAVIFAR M, HERATH S, WEERASOORIYA U P, et al. Measurement of microemulsion viscosity and its implications for chemical EOR[M]. SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2016.
    [31] NGUELE R, SASAKI K, SUGAI Y, et al. Mobilization and displacement of heavy oil by cationic microemulsions in different sandstone formations [J]. Journal of Petroleum Science and Engineering, 2017, 157:1115-1129.
    [32] KUMAR N, MANDAL A. Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application [J]. Energy & Fuels, 2018, 32(6): 6452-6466.
    [33] 杨传玺, 王小宁, 杨诚. Pickering乳液稳定性研究进展[J]. 科技导报, 2018, 36(5): 70-76. YANG C X, WANG X N, YANG C. Research progress on the stability of Pickering emulsion[J]. Science & Technology Review, 2018, 36(5): 70-76.
    [34] BRIGGS N, RAMAN A K Y, BARRETT L, et al. Stable pickering emulsions using multi-walled carbon nanotubes of varying wettability [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 227-235.
    [35] KIM I, WORTHEN A J, JOHNSTON K P, et al. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams [J]. Journal of Nanoparticle Research, 2016, 18(4): 1-12.
    [36] QI L, LUO Z, LU X. Facile synthesis of starch-based nanoparticle stabilized Pickering emulsion: its pH-responsive behavior and application for recyclable catalysis [J]. Green Chemistry, 2018, 20(7): 1538-1550.
    [37] WEI B, LI H, LI Q, et al. Stabilization of foam lamella using novel surface-grafted nanocellulose-based nanofluids [J]. Langmuir, 2017, 33(21): 5127-5139.
    [38] ZALLAGHI M, KHARRAT R, HASHEMI A. Improving the microscopic sweep efficiency of water flooding using silica nanoparticles [J]. Journal of Petroleum Exploration and Production Technology, 2017(4): 1-11.
    [39] ZHANG H, RAMAKRISHNAN T S, NIKLOV A, et al. Enhanced oil displacement by nanofluid’s structural disjoining pressure in model fractured porous media [J]. Journal of Colloid and Interface Science, 2018, 511: 48-56.
    [40] CHEN C, WANG S, KADHUM M J, et al. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study [J]. Fuel, 2018, 222: 561-568.
    [41] SHAHRABADI A, BAGHERZADEH H, ROUSTAEI A, et al. Experimental ivestigation of HLP nnofluid ptential to ehance ol rcovery: A mchanistic aproach. SPE iternational olfield nnotechnology cnference and ehibition[J]. Society of Petroleum Engineers, 2012, 156-642.
    [42] KARIMI A, FAKHROUEIAN Z, BAHRAMIAN A, et al. Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications [J]. Energy & Fuels, 2012, 26(2): 1028-1036.
    [43] HENDRANINGRAT L, LI S, TORS?TER O. A coreflood investigation of nanofluid enhanced oil recovery [J]. Journal of Petroleum Science and Engineering, 2013, 111: 128-138.
    [44] EHTESABI H, AHADIAN M M, TAGHIKHANI V, et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids [J]. Energy & Fuels, 2013, 28(1): 423-430.
    [45] ZARGARTALEBI M, KHARRAT R, BARATI N. Enhancement of surfactant flooding performance by the use of silica nanoparticles [J]. Fuel, 2015, 143: 21-27.
    [46] HENDRANINGRAT L, TORS?TER O. A Stabilizer that enhances the oil recovery process ssing silica-based nanofluids [J]. Transport in Porous Media, 2015, 108(3): 679-96.
    [47] BEHZADI A, MOHAMMADI A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery [J]. Journal of Nanoparticle Research, 2016, 18(9): 266.
    [48] MANESH R R, KOHNEHPOUSHI M, ESKANDARI M, et al. Synthesis and evaluation of nano γ-Al2O3 with spherical, rod-shaped, and plate-like morphologies on enhanced heavy oil recovery [J]. Materials Research Express, 2017, 4(9): 095025.
    [49] EBRAHIMI M, KHARRAT R, MORADI B. Experimental investigation of wettability alteration in reservoir rock using silica, alumina and titania nanoparticles [J]. Petroleum Research, 2018, 28(99): 38-42.
    [50] LUO D, WANG F, ZHU J, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7711-7716.
    [51] LUO D, WANG F, ALAM M K, et al. Colloidal stability of graphene-based amphiphilic Janus nanosheet fluid [J]. Chemistry of Materials, 2017, 29(8): 3454-3460.
    [52] LUO D, WANG F, ZHU J, et al. Secondary oil recovery using graphene-based amphiphilic Janus nanosheet fluid at an ultralow concentration [J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11125-11132.
    [53] KAZEMZADEH Y, SHOJAEI S, RIAZI M, et al. Review on application of nanoparticles for EOR purposes; a critical of the opportunities and challenges [J]. Chinese Journal of Chemical Engineering, 2018, 27: 237-246.
    [54] AGISTA M, GUO K, YU Z. A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery [J]. Applied Sciences, 2018, 8(6): 871-899.
    [55] SUN X, ZHANG Y, CHEN G, et al. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress [J]. Energies, 2017, 10(3): 345-377.
    [56] CHAUDHURY M K. Complex fluids: Spread the word about nanofluids [J]. Nature, 2003, 423(6936): 131-132.