腐蚀燃气管道地震波作用下的可靠性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
城市腐蚀燃气管道是震后恢复中重要的生命线工程之一,因此对腐蚀燃气管道在地震条件下的可靠性分析具有重要的意义。根据地震波传播产生的轴向应力和腐蚀应力模型,建立了城市腐蚀燃气管道可靠性评价的极限状态方程,采用蒙特卡罗方法模拟了管道的失效概率。由淮南市燃气管道案例的分析结果发现,地震对管道产生轴向应力作用主要归因于峰值地表速度;地震和腐蚀作用对燃气管道的破坏作用较为严重,并且因地震波传播的影响区域很大,对两种因素进行综合分析具有重要意义;减小管材屈服强度、工作压力等参数的变异程度,能够有效地增加腐蚀燃气管道的可靠性;由管道安全的变量重要性分析,得出交通荷载、影响系数和弯曲惯量系数对管道安全最为重要。
Water supply pipeline is one of vital projects in the restoration work after earthquake.Against possible secondary disasters under an earthquake, the reliability analysis of gas pipelines under an earthquake is of great significance.In this paper, the axial stress generated by seismic wave propagation, the corrosion models and the pipes' characteristics are analyzed to derive a limit equation of gas pipelines' reliability for the earthquake evaluation.The probability of reliability is evaluated by Monte Carlo method.An analysis on Huainan's gas pipelines shows that the seismic axial stress in the pipeline mainly comes from the peak surface velocity;the seismic and corrosion damages to the gas pipeline are serious;due to the extended impact region of seismic wave propagation, a comprehensive analysis of the two factors is of great significance;the reliability of corrosion water supply pipeline can be effectively enhanced by reducing the variations of the pipe'syield strength, working stresses and other parameters.From an analysis of relative importance of various variables, it is concluded that the wheel load in traffic, the impact factor and the bending moment coefficient are the most important for pipeline safety.
引文
[1]吴少艳,吴德军,陈东.地震对市政管道的破坏及管道的抗震处理[J].地震工程与工程振动,2006,26(3):200-202.Wu Shaoyan,Wu Dejun,Chen Dong.Earthquake Engineering and Engineering Vibration,2006,26(3):200-202.
    [2]刘威,李杰,卫书麟,等.供气管道抗震可靠性分析[J].工程抗震与加固改造,2005,27(6):95-100.Liu Wei,Li Jie,Wei Shulin,et al.Earthquake Resistant Engineering and Retrofitting,2005,27(6):95-100.
    [3]Shibata A.Estimation of earthquake damage to urban systems[J].Structural Control and Health Monitoring,2006,13:454-471.
    [4]Pitilakis K,Alexoudi M,Argyroudis S,et al.Earthquake risk assessment of lifelines[J].Bulletin of Earthquake Engineering,2006,4(4):365-390.
    [5]Amirat A,Mohamed-Chateauneuf A,Chaoui K.Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress[J].International Journal of Pressure Vessels and Piping,2006,83(2):107-117.
    [6]Teixeira A P,Guedes Soares C,Netto T A,et al.Reliability of pipelines with corrosion defects[J].International Journal of Pressure Vessels and Piping,2008,85(4):228-237.
    [7]Toprak S,Taskin F.Estimation of earthquake damage to buried pipelines caused by ground shaking[J].Natural Hazards,2007,40:1-24.
    [8]Kanai K.An Empirical formula for the spectrum of strong earthquake motion[J].Bulletin of Earthquake Research Institute,1961,39:85-95.
    [9]Joyner W B,Boore D M.Peak horizontal acceleration and velocity from strong-motion records including records from the1979Imperial Valley,California,Earthquake[J].Bulletin of the Seismological Society of America,1981,71:2011-2038.
    [10]Campbell K W.Near source attenuation of peak horizontal acceleration[J].Bulletin of the Seismological Society of America,1981,71:2039-2070.
    [11]American Lifelines Alliance.Guidelines for the Design of Buried Steel Pipe[S].New York:ASCE,2001.
    [12]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局.GB50251-2003输气管道工程设计规范[S].北京:中国计划出版社,2003.Ministry of Construction of People's Republic of China,State Administration of Quality Supervision Inspection and Quarantine of People's Republic of China.GB50251-2003Gas Pipeline Design Code[S].Beijing:China Planning Press,2003.
    [13]Kucera V,Mattsson E.Atmospheric corrosion[M]//Mansfeld F ed.Corrosion Mechanics.New York:Marcel Dekker,1987.
    [14]梁国业,廖建平.数学建模[M].北京:冶金工业出版社,2004:113-142.Liang Guoye,Liao Jianping.Mathematical modeling[M].Beijing:Metallurgical Industry Press,2004:113-142.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心