基于Zhou-Nowak数值积分法的结构整体概率抗震能力分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
结构整体概率抗震能力分析是新一代基于性能的地震工程中的一个重要模块,以往的研究主要采用平均值一次二阶矩法或Monte Carlo模拟法,分析了这2种方法存在的问题。为了有效地考虑结构系统随机性对结构整体抗震能力的影响,将Zhou-Nowak数值积分法与结构非线性静力推覆分析相结合,提出了基于Zhou-Nowak数值积分法的结构整体概率抗震能力分析方法,以新一代地震工程模拟仿真软件OpenSees为计算平台,以最大层间位移角作为结构整体抗震能力参数,对钢筋混凝土框架结构的整体概率抗震能力进行分析,并用Monte Carlo模拟法结果进行验证,从而建立了钢筋混凝土框架结构相应于不同性能水准的整体概率抗震能力模型。算例分析表明,所提方法是一种具有较高效率和较好精度的结构整体概率抗震能力分析方法。
Global probabilistic seismic capacity analysis(PSCA) is an important part of the new-generation performance-based earthquake engineering(PBEE).The two conventional methods for PSCA are mean-value first order second moment(MVFOSM) and Monte Carlo simulation(MCS),their problems are pointed out in this paper.To efficiently consider the effects of randomness in structural system on global seismic capacity of structures,a practical global PSCA method based on Zhou-Nowak numerical integration approach is proposed,which combines Zhou-Nowak' method with pushover analysis.The new-generation earthquake engineering simulation software OpenSees is taken as the computation platform.The global seismic capacity of reinforced concrete frame structures is analyzed by using Zhou-Nowak numerical integration approach-based probabilistic analysis method,and compared to its accuracy and efficiency with MCS method.The first two statistics(i.e.mean value and standard deviation) of the maximum inter-storey displacement angle which is taken as the parameter of the global seismic capacity are gained,and its probability model is built up.It is shown by a numerical example that the method put forward by this paper is a relatively highly efficient and exact one to analyze the global probabilistic seismic capacity of structures.
引文
[1]Cornell C A,Krawinkler H.Progress and challenges in seismic performance assessment[J].PEER Center News,2000,3(2):1-4.
    [2]Moehle J,Deierlein G G.A framework methodology for performance-based earthquake engineering[C].Proceedings of the 13th World Conferenceon Earthquake Engineering,Vancouver,Canada,1-6 August,2004(CD-ROM).
    [3]Gardoni P,Der Kiureghian A,Mosalam KM.Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experi-mental observations[J].Journal of Engineering Mechanics,ASCE,2002,128(10):1024-1038.
    [4]Zhou J H,Nowak A S.Integration formulas to evaluate functions of random variables[J].Structural Safety,1988,5(4):267-284.
    [5]Baker J W,Cornell C A.Uncertainty specification and propagation for loss estimation using FOSMmethod[R].PEER Report2003/07,Universi-ty of California,Berkeley,California,2003.
    [6]Hohenbichler M,Rackwitz R.Non-normal dependent vectors in structural safety[J].Journal of Engineering Mechanics,ASCE,1981,107(6):1227-1238.
    [7]Liu P L,Der Kiureghian A.Multivariate distribution models with prescribed marginals and covariances[J].Probabilistic Engineering Mechanics,1986,1(2):105-112.
    [8]吕大刚,于晓辉,王光远.基于MVFOSM有限元可靠度方法的结构整体概率抗震能力分析[J].世界地震工程,2008,24(2):1-8.
    [9]McKenna F,Fenves G L,Scott M H.Open system for earthquake engineering simulation[R].California:Pacific Earthquake Engineering Re-search Center,University of California,Berkeley,2008.
    [10]Vamvatsikos D,Cornell CA.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心