混凝土核心筒的有限元模拟及若干参数的影响分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
运用ABAQUS分析软件,建立水平荷载作用下的钢筋混凝土核心筒有限元模型,进行非线性分析,并将分析结果与大比例试件的试验结果对比,对所采用的有限元模型加以验证。在此基础上,进行改变钢筋混凝土核心筒轴压比、高宽比和筒壁厚度的受力过程模拟分析,研究这些参数对筒体性能的影响。结果表明:随着轴压比的增大,筒体的破坏由受拉向受压破坏转变,筒体最大水平承载力经历先增加后减小的变化,延性变差;随着高宽比的增大,筒体破坏形态由剪切向弯曲破坏转变,延性增加,整体弯曲作用更加明显,最大底部剪力减小;随着壁厚的增大,试件破坏由截面压屈失稳向墙肢底部受弯破坏转变,墙肢破坏区域沿高度方向发展,耗能能力更强,承载力明显增大,变形能力显著增加。
Finite element(FE) analysis of the reinforced concrete core wall under lateral loading is performed in this paper.The FE model,using the software ABAQUS,is proposed to carry out the nonlinear analysis and is verified by comparing the computational results with the corresponding experimental ones obtained from laboratory tests of large-scale specimens.On this basis,a series of reinforced concrete core walls with different axial load ratios,aspect ratios and wall thicknesses are simulated and analyzed under lateral loading.The results show the effects of these parameters on the behavior of reinforced concrete core walls.With increase of the axial load ratio,the failure mode of core walls changes from tension failure mode towards compression one,and the lateral loading capacity of core walls,increases at first,and then decreases,with their ductility getting worse.With increase of the aspect ratio,the failure mode of core walls changes from the shear failure to the flexural failure with the improvement of ductility,while the base shear force decreases.Failure of the specimen with thin wall arises from the cross-section buckling instability, while the failure of specimens with thick wall is controlled by flexural capacity at bottom of wall piers,and with increase of the wall thickness,both bearing capacity and deformation ability of the core walls significantly increase and energy dissipation ability improve with the failure region extending upward from the bottom.
引文
[1]杜修力,贾鹏,赵均.钢筋混凝土核心筒不同轴压比作用下抗震性能试验研究[J].哈尔滨工业大学学报,2007,39(增2):567-572. ??Du X L,Jia P,Zhao J.Experimental study on seismic behavior of reinforced concrete core wall under different axial load ratio[J].Journal of Harbin Institute of Technology,2007,39(S2):567-572.
    [2]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动,2002,22(3):41-50. L(u|¨) X L,Li J L.Seismic behavior of reinforced concrete core walls subjected to cyclic loading[J].Earthquake Engineering and Engineering Vibration,2002, 22(3):41-50.
    [3]曹万林,常卫华,张建伟,等.内藏钢桁架带洞口混凝土组合核心筒抗震试验及分析[J].东南大学学报(自然科学版),2008,38(2):283-288. Cao W L,Chang W H,Zhang J W,et al.Experimental study on seismic behavior of RC composite perforated core walls with concealed steel truss[J].Journal of Southeast University(Natural Science Edition), 2008,38(2):283-288.
    [4]李国强,周向明,丁翔.高层建筑钢-混凝土混合结构模型模拟地震振动台试验研究[J].建筑结构学报, 2001,22(2):2-7. Li G Q,Zhou X M,Ding X.Shaking table study on a model of steel-concrete hybrid structure tall buildings [J].Journal of Building Structures,2001,22(2):2- 7.
    [5]Nakachi T.Experimental study on deformation capacity of reinforced concrete core walls after yielding[C] //Proceedings of the 11~(th) WCEE.Mexico:Elsevier Science,1996.1747.
    [6]Maruta M,Suzuki N,Miyashita T,et al.Structural capacities of H-shaped RC core walls subjected to lateral load and torsion[C]// Proceedings of the 12~(th) WCEE.New Zealand:The New Zealand Society for Earthquake Engineering,2000.1028.
    [7]Sugaya K,Teshigawara M,Kato M,et al.Experimental study on carrying shear force ratio of 12-story coupled shear wall[C]// Proceedings of the 12~(th) WCEE.New Zealand:The New Zealand Society for Earthquake Engineering,2000.2152.
    [8]Habasaki A,Kitada Y,Nishikawa T,et al.Multi-directional loading test for RC seismic shear walls[C]// Proceedings of the 12~(th) WCEE.New Zealand:The New Zealand Society for Earthquake Engineering, 2000.454.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心