圆弧滑道双辊轴摩擦摆隔震系统的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据动能定理及滚动摩擦耗能原理推求了一种圆弧滑道双辊轴摩擦摆隔震系统动力反应分析计算公式。辊轴放置在具有内凹圆弧曲线形状的上盘、下盘滑道中间,与滑道之间为非协调接触,形成辊轴式摩擦摆。分析与计算结果表明:这种摩擦摆具有隔震系统所必需特性。较长的自振周期使其具有必要的隔离能力;依靠结构重力可以使其复位;依靠滚动摩擦的作用,可以消耗传入上部结构的地震能量。设置辊轴摩擦隔震系统之后,能大幅减少结构地震动力反应的层间位移。适当地选取圆弧滑道半径与滚动摩擦系数值,隔震效果可达90%左右。当圆弧滑道半径为2m―3m、滚动摩擦系数小于0.01时,隔震系统具有较好的消能效果与复位能力。
A theoretical analyzing approach about a class of seismic isolation systems, RFPS (Rolling Friction Pendulum System), is presented. It starts from the relative kinematics energy theorem in multiply body dynamics. This system consists of two rollers placed in the vicinity of two circular concave curve slides to form the non-indented contacts. Computational results shows that it has the essential capabilities required for an effective isolation system. The rather long vibration period provides the necessary isolation capability, the gravity provides the reposition capability, and the rolling friction acting at the contacting surface on the top and bottom plate respectively, provides the energy dissipation capability. The inter-storey drift resulting from seismic action could be drastically decreased on buildings equipped with a RFPS system. If an optimum combination of slide radius and a rolling friction coefficient is adopted, the seismic isolation effect could be as high as 90%. When the slide radius is in the range of 2m―3m and the rolling friction coefficient less than 0.01, the RFPS system posses good energy dissipation and reposition capability.
引文
[1]Wang Yenpo,Chung Laploi,Liao,Wei Hsin.Seismic response analysis of bridges isolated with friction pendulum bearings[J].Earthquake Engineering&Structural Dynamics,1998,27(10):1069―1093.
    [2]Jangid R S,Datta T K.Seismic behaviour of base isolated buildings:A state of the art review[J].Structures and Buildings,1995,110(2):186―202.
    [3]周锡元,阎维明,杨润林.建筑结构的震动、减振和振动控制[J].建筑结构学报,2002,23(2):2―11.Zhou Xiyuan,Yan Weiming,Yang Runlin.Seismic base isolation,energy dissipation and vibration control of building structures[J].Journal of Building Structures,2002,23(2):2―11.(in Chinese)
    [4]Zayas V,Low S S,Mahin S A.A simple pendulum technique for achieving seismic isolation[J].Earthquake Spectra,1990,6(2):317―331.
    [5]李大望,周锡元,王东炜.摩擦摆系统振动性态的进一步分析[J].振动工程学报,2001,14(3):330―333.Li Dawang,Zhou Xiyuan,Wang Dongwei.Further analysis for the vibration performances of friction pendulum systems[J].Journal of Vibration Engineering,2001,14(3):330―333.(in Chinese)
    [6]李大望,赵卓.摩擦系统稳态随机响应预测[J].世界地震工程,2000,16(3):101―104.Li Dawang,Zhao Zhuo.Forecasting for the steady state random responses of friction pendulum systems[J].World Earthquake Engineering,2000,16(3):101―104.(in Chinese)
    [7]Yuan Jian,Rosch K E Paul.Equation of motion for novel friction pendulum system with dual rollers[J].Transactions of Nanjing University of Aeronautics&Astronautics,2005,22(4):276―280.
    [8]Mokha A S,Amin N Constantinou M C,Zayas V.Seismic isolation retrofit of large historic buildings[J].Journal of Structure Engineering,ASCE,1996,122(3):298―308.
    [9]Hwang J S.Evaluation of equivalent linear analysis methods of bridge isolation[J].Journal of Structure Engineering,ASCE,1996,122(8):972―976.
    [10]Tsopelas P,Constantinou M C,Kim Y S,Okamoto S.Experimental study of FPS system in bridge seismic isolation[J].Earthquake Engineering and Structural Dynamics,1996,25:65―78.
    [11]Johnson K L.Contact mechanics[M].London:Cambridge University Press,1985.
    [12]Drutowski R C.Energy losses of balls rolling on plates[J].Transactions of ASME,Series D,1959,81:233―238.
    [13]Bentall R H,Johnson K L.Slip in the contact of two dissimilar elastic rollers[J].International Journal ofMechanical Science,1967,9:389―404.
    [14]Drutowski R C.The role of micro-slip for free rolling bodies[J].Journal of Basic Engineering,Transactions of ASME,Serial D,1965,87:724―728.
    [15]Johnson K L.Surface interaction between elastically loaded bodies under tangential forces[J].Proceedings of Royal Society,Serial A,1955,230:531―548.
    [16]Johnson K L.The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J].Transactions of ASME,Journal of Applied Mechanics,1958,25:339―347.
    [17]Courtney-Pratt J S,Eisner E.The effect of a tangential force on the contact of metallic bodies[J].Proceedings of Royal Society,1957,288(1215):529―550.
    [18]Tabor D.The mechanism of rolling friction:the elastic range[J].Proceedings of Royal Society,Serial A,1955,229:198―220.
    [19]Wannop G L,Archard J F.Elastic hysteresis and a catastrophic wear mechanism for polymers[J].Proceedings of Institution of Mechanical Engineers,1973,187:615―623.
    [20]Hamilton G M.Plastic flow in rollers loaded above the yield point[J].Proceedings of Institution of Mechanical Engineers,1963,177:667―675.
    [21]Hamilton G M,Moore S L.Deformation and pressure in an elastohydrodynamic contact[J].Proceedings of Royal Society,Serial A,1971,332:313―330.
    [22]Johnson K L,White I C.Rolling resistance measurement at high loads[J].International Journal of Mechanical Science,1974,16:939―943.
    [23]Merwin J E,Johnson K L.An analysis of plastic deformation in rolling contact[J].Proceedings of Institution of Mechanical Engineers,1963,177:676―690.
    [24]Greenwood J A,Minshall H,Tabor D.Hysteresis losses in rolling and sliding friction[J].Proceedings of Royal Society,Serial A,1961,259(1299):480―507.
    [25]Kendall K,Tabor D.An ultrasonic study of the area of contact between stationary and sliding surfaces[J].Proceedings of Royal Society,Serial A,1971,321:321―340.
    [26]Spence D A.Self similar solutions to adhesive contact problems with incremental loading[J].Proceedings of Royal Society,Serial A,1968,305:55―80.
    [27]McFarlane J S,Tabor D.Relation between friction and adhesion[J].Proceedings of Royal Society,Serial A,1961202(1069):244―253.
    [28]Bikkerman J J.Effect of surface roughness on rolling friction[J].Journal of Applied Physics,1949,20(10):972―975.
    [29]Carter F W.On the action of a locomotive driving wheel[J].Proceedings Royal Society,Serial A,1926,112:151―157.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心