区域断裂对韩国东南部地区现今应力状态的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用朝鲜半岛东南部地区浅层地应力数据,给出区域现今应力状态的分布特征及其与断层分布的关系。地应力数据表明,区域最大主压应力呈ENE-WSW到NE-SW向,这与地震震源机制解及欧亚板块东部构造应力方向的一阶模式一致。或许是受到断层的影响,现今应力张量在大小和方向上表现出不均匀性。区域水平主应力变化较为一致,而垂向则变化较大。应力场的大小受区域断层多少的影响,断层越多应力越小,这表明断层应力释放或许是造成低应力的主要原因之一。为了验证这种假设的正确性,我们对第四纪活动断层与现今应力场的关系进行分析。在现今应力状态下,断层剪应力与正应力比值较高,这与区域大部分断层以走滑为主是一致的,这意味着断层的活动可以维持当前的应力场。
引文
[1]Barton C A,Zoback M D.Stress perturbations associated with active faults penetrated by boreholes:Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement.J.Geophys.Res.,1994,99:9 373-9 390
    [2]Sassi W,Faure J-L.Role of faults and layer interfaces on the spatial variation of stress regimes in ba-sins:inferences from numerical modelling.Tectonophysics,1997,266:101-119
    [3]Okada A.Active fault topography and trench survey in the central part of the Yangsan fault,SoutheastKorea.J.Geogr.Japan,1994,103:111-126
    [4]Ree J H.Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula:Age constraintby optically stimulated luminescence dating.Island Arc.,2003,12:1-12
    [5]Lim H U,Lee C I.The trends and variations of natural stresses in rock masses with depth.Tunnel andUnderground Space,1991,1:91-101
    [6]Kim S J.A study on the estimation of design parameters appropriate to Korean rock masses.Ph.D.Thesis.Daegu:Kyungpook National University,2002
    [7]Haimson B C.Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indica-tors of regional stress.Int.J.Rock Mech.Min.Sci.,2003,40:1 243-1 256
    [8]Lee J B,Chang C.Current state of stress in southeast Korea.Journal of Engineering Geology,2007,17:299-307
    [9]Kim K,Franklin J A.Suggested methods for rock stress determination.Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.1987,24:59-63
    [10]Zoback M D.Reservoir Geomechanics.Cambridge:Cambridge University Press,2007
    [11]Müller B.Regional patterns of tectonic stress in Europe.J.Geophys.Res.,1992,97:11 783-11 803
    [12]Zoback M L.First-and second-order patterns of stress in the lithosphere:the world stress map project.J.Geophys.Res.,1992,97:11 703-11 728
    [13]Hillis R R,Reynolds S D.The Australian stress map.J.Geol.Soc.,2000,157:915-921
    [14]Tingay M.Present-day stress field of southeast Asia.Tectonophysics,2010,482:92-104
    [15]Park Y.Fault slip analysis of Quaternary faults in southeastern Korea.Gondwana Research,2006,9:118-125
    [16]Heidbach O.Global crustal stress pattern based on the World Stress Map database release 2008.Tec-tonophysics,2010,482:3-15
    [17]Hudson J A,Cooling C M.In situ rock stresses and their measurement in the U.K.-Part I.The currentstate of knowledge.Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.1988,25:363-370
    [18]Evans K F.Appalachian stress study 3.Regional scale stress variations and their relation to structureand contemporary tectonics.J.Geophys.Res.,1989,94:17 619-17 645
    [19]Ask M V S.In situ stress from breakouts in the Danish sector of the North Sea.Marine and PetroleumGeology,1997,14:231-243
    [20]Yale D P.Fault and stress magnitude controls on variations in the orientation in situ stress.In:M.Ameen(ed.)Fracture and In-situ Stress Characterization of Hydrocarbon Reservoirs.London:Geolog-ical Society,2003:55-64
    [21]Gephart J W.FMSI:A Fortran program for inverting fault/slickenside and earthquake focal mechanismdata to obtain the regional stress tensor.Comp.Geosci.,1990,16:953-989
    [22]Byerlee J D.Friction of rocks.PAGEOPH,1978,116:615-626
    [23]Morrow C A.The effect of mineral bond strength and adsorbed water on fault gouge frictional strength.Geophysical Research Letters,2000,27:815-818
    [24]Moore D E,Lockner D A.Crystallographic controls on the frictional behavior of dry and water-saturatedsheet structure minerals.J.Geophys.Res.,2004,109,B03401:1-16

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心