CFRP网架结构的地震响应分析及失效模式研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
空间结构正在向着超大跨度发展,结构自重是限制其实现这种跨越能力的重要因。碳纤维复合材料(CFRP)具有轻质高强的特点,为这一问题的解决提供了有效的途径。利用轻质高强的碳纤维复合材料(CFRP)作为构成空间结构的基本材料,以空间结构中最普遍采用的平板网架为研究对象,分析CFRP平板网架的地震响应,并与传统钢网架进行比较。首先,对比分析常遇地震作用下不同跨度CFRP网架和钢网架的地震特性;随后,研究并比较罕遇地震作用下100m跨度CFRP网架和钢网架的地震特性;最后,采用Pushover分析方法,对CFRP平板网架的抗震能力、失效破坏模式及其控制方法进行研究。结果表明,CFRP网架的力学特性和抗震性能均明显优于钢网架;在竖向地震荷载作用下,控制CFRP网架失效的关键条件是网架支座水平位移不超过其位移限值。
The self-weight and it-induced internal force of long span space structure are remarkably increased with increasing of its span,thus its spanning ability is limited.This problem can be solved by using carbon fiber reinforced plastic(CFRP)instead of conventional steel in construction of long span space structures.Thus in this paper,space structure is proposed to be constructed fully by CFRP.The seismic response of CFRP double-layer grids is investigated and compared with steel grids.First,the dynamic property of CFRP grids(with various spans)subjected to low-level earthquake is investigated.After that,the dynamic property of CFRP grids(100m span)subjected to high-level earthquake is also investigated.Finally,the seismic capacity,failure mode under earthquake and its control method of CFRP grid are investigated base on the static elastoplastic analysis.The analysis results indicate that the mechanical property and earthquake resistance ability of CFRP grids are much better than that of the steel grids.The key criteria controlling the failure mode of CFRP grid under earthquake is that keeping the horizontal displacement of the grid smaller than the horizontal displacement limitation of the bearing.
引文
[1]Bradshaw R,Campbell D,Gargari M,et al.Special structures:past,present,and future[J].Journal of Structural Engineering,ASCE,2002,128(6):691-709
    [2]Plagianakos T S,Saravanos D A.Mechanics and finite elements for the damped dynamic characteristics of curvilinear laminates and composite shell structures[J].Journal of Sound and Vibration,2003,263(2):399-414
    [3]Yim J H.A damping analysis of composite laminates using the closed form expression for the basic damping of Poisson s ratio[J].Composite Structures,1999,46(4):405-411
    [4]张亮泉,李惠,欧进萍.纤维缠绕CFRP圆管力学性能的试验及数值模拟研究[J].土木工程学报,2009,42(8):50-56(Zhang Liangquan,Li Hui,Ou Jinping.Experimental and numerical study on mechanical properties of filament-wound CFRP tubes[J].China CivilEngineering Journal,2009,42(8):50-56(in Chinese))
    [5]叶燎原,潘文.结构静力弹塑性分析(Pushover)的原理和计算实例[J].建筑结构学报,2000,21(1):37-51(Ye Liaoyuan,Pan Wen.The principle of nonlinear static analysis(Push-over)and numerical examples[J].Journal of Building Structures,2000,21(1):37-51(in Chinese))
    [6]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89-97(Hou Shuang,Ou Jinpin.A study of load pattern selection of pushover analysis and influence of higher modes[J].Earthquake Engineering and Engineering Vibration,2004,24(3):89-97(in Chinese))
    [7]佘师和.竖向地震反应谱[J].哈尔滨建筑工程学院学报,1982,(2):26-39(She Shihe.Response spectrum of vertical seismic[J].Journal of Harbin University of Civil Engineering and Architecture,1982,(2):26-39(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心