不同模型对足尺钢框架振动台试验模拟的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文分别采用纤维单元模型和塑性铰单元模型对一个四层足尺钢框架振动台试验进行模拟分析,在三维空间非线性分析程序Perform-3D中进行动力非线性分析,比较分析结果,并与试验结果对比,以研究两种模型应用于钢框架整体结构非线性分析的计算精度。文中并讨论了纤维单元模型截面纤维的划分、塑性区长度的取值等问题。最后对采用组合梁的整体结构模型进行了动力非线性分析。结果表明,纤维模型的建模速度比塑性铰模型快,但塑性铰模型能模拟结构的倒塌时间。Perform-3D程序的纤维单元模型和塑性铰单元模型用于计算我国规范规定的7度和8度地震作用的多层钢框架结构,其结果是真实可靠的,而且计算结果偏于安全。
In order to study the accuracy of nonlinear analysis of two macro models, this paper presents the dynamic nonlinear analysis with fiber models and plastic hinge models by a 3-dimensional nonlinear analysis software, named Perform-3D. Both models are based on the full-scale steel moment resisting frame shaking table test, which is carried out on E-Defense in Japan. Analysis results are compared with that of shaking table test. The number of fibers in element sections, the length of plastic zones and the energy dissipation are discussed. Finally, the dynamic nonlinear anlysis of structural models with composite beam components are carried out. It is shown that the fiber models can be built easier than plastic hinge models, but plastic hinge models can simulate collapse time of the structure, and both models in Perform-3D can be applied to inelastic analysis for multi-story steel frame structures under earthquake actions with intensities 7 and 8. The calculating results for the two models are reliable and safe.
引文
[1]National Research Institute for Earth Science and Disaster Prevention.Four-story steel bulding collapse analysis blind prediction contest rules[Z].http://www.blind-anlaysis.jp/index-e.htm,appendix-e.pdf.2007-6-18.
    [2]Masayoshi SATO,Takahito INOUE.General frame work of research topics utilizing the3D full scale earthquake testing facility[J].Journal of Ja-pan Association for Earthquake Engineering,2004,4(3):449-456.
    [3]Computer And Structures.Perform-3D nonlinear analysis and performance assessment for3D structures user guide[M].Berkeley,CA.Computer and Structures,2006.
    [4]吕西林,卢文生.纤维杆元模型在框架结构非线性分析中的应用[J].力学季刊,2006,27(1):14-22.
    [5]韩小雷,唐剑秋,黄艺燕.钢管混凝土巨型斜交网格筒中筒结构非线性分析[J].地震工程与工程振动,2009,29(4):77-84.
    [6]刘永华,张耀春.空间钢框架精细塑性铰法高等分析[J].工程力学,2006,23(增刊I):108-116.
    [7]Seung-Eock Kim,Dong-Ho Lee.Second-order distributed plasticity analysis of space steel frames[J].Engineering Structures,2002,24(6):735-744.
    [8]韩小雷,郑宜,季静,等.美国基于性能的高层建筑结构抗震设计规范[J].地震工程与工程振动,2008,28(1):64-70.
    [9]Mander J B,Priestley MJ N,Park R.Theoretical stress strain model for confined concrete[J].ASCE Journal of Structural Engineering,1988,114(8):1804-1826.
    [10]Chadwell C B.XTRACT-cross section analysis software for structural and earthquake engineering[Z].http://www.imbsen.com/xtract.htm.
    [11]韩小雷,陈学伟,郑宜,等.足尺钢框架振动台试验及动力弹塑性数值模拟[J].地震工程与工程振动,2008,28(6):134-141.
    [12]Paulay T,Priesley MJ N,戴瑞同,等译.钢筋混凝土和砌体结构抗震设计[M].北京:中国建筑工业出版社,1999.
    [13]Mehmet Inel,Hayri Baytan Ozmen.Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings[J].Engineering Stru-tures,2006,28(11):1494-1502.
    [14]Chen Xuewei,Han Xiaolie,Jack CHEANG.Dynamic inelastic numerical simulation for a shaking table test of a full scale steel moment frame structure based on OpenSEES[C]∥The14th World Conference on Earthquake Engineering,Beijing:2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心