基于场地土非线性性质的SSDI体系动力特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
现有常规抗震设计方法均假定地基为刚性,忽略场地土非线性性质对基础与上部结构动力特性及地震反应的影响。为了将土的非线性性质更好地应用于现有抗震设计和工程实践中,采用有限元方法,选用Davidenkov地基模型并定义其参数,利用ANSYS重新启动分析方法实现程序对土体材料的非线性模拟。通过算例,对土–结构动力相互作用体系进行ANSYS模拟与分析,充分考虑土的非线性以及土体与结构接触界面的状态非线性,对比了刚性地基条件下与非线性土地基条件下上部结构的动力反应,研究了结构不同高度处动力反应的变化规律,同时考察了不同性质地基土非线性性质对整个SSDI体系位移、速度与加速度非线性反应的影响,进而研究体系的抗震性能。与已有实验研究结果对比表明,本文方法具有很强的实用性,符合土–结构动力相互作用的实际工作机理,为研究土的动力特性并将其应用于工程实践提供了重要的理论依据。
In the existing seismic design methods the subgrades are all assumed to be rigid, and the effect of soil nonlinearity on foundation and superstructure is ignored. For applying soil nonlinearity to earthquake-resistant design and engineering practice, finite element method is adopted and the simulation of soil constitutional relationship is realized through choosing the Davidenkov soil model with proper parameters and using the restarting method in ANSYS. In succession, the soil nonlinearity and contact boundary nonlinearity are fully considered through the ANSYS procedure, then the dynamic reaction for the superstructure with rigid foundation is compared with that with nonlinear soil foundation, and the variation of the structural dynamic reaction at different heights is studied. At the same time, the dynamic properties of the soil-structure-dynamic-interaction (SSDI) system about the displacement, velocity and acceleration response of different soil basements are studied. A conclusion is drawn that the finite element method is very practicable based on comparison with the existing test results, and the results agree with the actual working mechanism of SSDI. It will provide theoretical basis for the engineering practice.
引文
[1]KAYNIA A M,KAUSEL E.Dynamic stiffness and seismic response of pile groups research report R82-03[R].Massachusetts:Massachusetts Institute of Technology Cambridge,1982.
    [2]NOGAMI T,JONES H W,MOSHER R L.Seismic response analysis of pile-supported structure:assessment of commonly used approximations[C]//Proceedings of 2nd International Conference:Recent Advancements of Geotechnical Earthquake Engineering and Soil Dynamics,[s.l.]:[s.n.].1991:931-940.
    [3]TOKI K,MIURA F.Nonlinear seismic response analysis of SSI system[J].Earthquake Engineering and Stucture Dynamics,1983,11:77-89.
    [4]何益斌,夏栋舟,黄欣荣,闫岩.土-桩-框架结构动力相互作用非线性有限元模拟[J].沈阳建筑大学学报(自然科学版),2008,24(3):428-432.(HE Yi-bin,XIA Dong-zhou,HUANG Xin-rong,et al.Nonlinear finite element analysis of soil-pile-frame structure-interaction system[J].Journal of Shenyang Jianzhu University(Natural Science),2008,24(3):428-432.(in Chinese))
    [5]MARTIN P P.Nonlinear method for dynamic analysis of ground response[D].Berkeley:University of California,1975.
    [6]孙静.岩土动剪切模量阻尼试验及应用研究[D].哈尔滨:中国地震局工程力学研究所,2004.(SUN Jing.Laboratory experimental and application study on dynamic shear modulus ratio and damping ratio of soils[D].Harbin:Institute of Engineering Mechanics,China Seismological Bureau,2004.(in Chinese))
    [7]陈跃庆.结构-地基动力相互作用体系振动台试验研究[D].上海:同济大学,2001.(CHEN Yue-qing.Study on shaking table test of dynamic soil-structure interaction[D].Shanghai:Tongji University,2001.(in Chinese))
    [8]陈波.土-桩基-结构动力相互作用体系的模拟及分析[D].上海:同济大学,2002.(CHEN Bo.Simulation and analysis on dynamic soil-pile-structure interaction system[D].Shanghai:Tongji University,2002.(in Chinese))
    [9]张国栋.土与结构相互作用体系随机地震反应分析[D].武汉:武汉大学,2004.(ZHANG Guo-dong.Nonlinear seismic response analysis of soil-structure interaction systems on stationary random excitations[D].Wuhan:Wuhan University,2004.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心