用液化度概念评价岩土结构地震液化变形的探讨
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震液化研究的核心是变形。在很多情况下地基虽未达到完全液化,然而饱和砂土由于超静水压的上升而造成的软化,使得地基及其上部结构发生较大变形。由于工程设计人员很难预测变形大小,因此引入液化度概念来间接表征岩土结构的变形。针对目前液化程度评价方法的缺点,给出采用液化度概念的原由,对液化度的概念进行了明确的定义并给出其计算方法。接着,通过分析1995年日本阪神大地震中沉箱结构液化变形,例证液化度评价岩土结构变形的重要意义。最后,提出用液化度评价岩土结构变形的研究思路,分析不同影响因素并建立它们之间经验的函数关系,提出工程设计中可通过不同影响因素的组合来优化地基处理范围,达到经济合理的效果。
Deformation of earth-structures is a key problem in studies of soil liquefaction due to earthquake.In many situations,relatively larger deformation of foundation and upper structures occurs before soils fully liquefy because excessive pore water pressures generated in saturated soils have softened the soil strength.However,it is difficult to predict such a deformation for practical engineers,so the concept of degree of liquefaction is introduced in this paper for assessing earth-structure deformations.Considering the disadvantages of existing methods of assessing liquefaction,the background of the concept is given,and the definition and computation methods of this concept are provided.Then,the importance of the concept is displayed by analyzing the deformation of the quay wall of caisson type in Kobe during the 1995 Great Hanshin earthquake.Finally,different influence factors are analyzed,and the relationship is produced between degree of liquefaction and earth-structure deformation.Furthermore by analyzing different influencing factors,the disposal areas subject to liquefaction destruction can be reasonably and economically optimized in engineering design.
引文
[1]刘汉龙.土动力学与岩土地震工程[A].第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003:56-68Liu H L.Soil dynamics and geotechnical earthquakeengineering[A].Academic Proceeding of the NinethSoil Mechanics and Geotechnical Engineering[C].Bei-jing:Tsinghua University publicity,2003:56-68
    [2]宫全美,周顺华,王炳龙,等.粉细砂层盾构隧道地基的地震液化判别[J].铁道学报,2000,22(5):47-52Gong Q M,Zhou S H,Wang B L,et al.Liquefactionanalysis of shield tunneling on fine-sand layer Earth-quake[J].Railway Transaction,2000,22(5):47-52
    [3]岩崎敏男.地盘流动化的判定方法[J].土木技术资料,1978,20(4):40-45
    [4]Monge O,Chassagneux D,Mouroux P.Methodologyfor liquefaction hazard studies new tool and recent ap-plications[J].Soil Dynamics and Earthquake Engi-neering,1998,(17):415-425
    [5]Orense R P.Assessment of liquefaction potentialbased on peak ground motion parameters[J].Soil Dy-namics and Earthquake Engineering,2005,(25):225-240
    [6]Murakami S,Yasuhara K,Suzuki,N.Vulearabilityassessment to liquefaction hazard induced by risingsea-levels due to Global warning[A].InternationalConference on Geotechnical Engineering for DisasterMitigation and Rehabilitation[C].Singapore:WorldScientific Pnblishing Company,2005:571-576
    [7]周云东.地震液化引起的地面大变形试验研究[D].南京:河海大学,2003.Zhou Y D.Laboratory study on large ground defor-mation induced by earthquake liquefaction[D].Nan-jing:Hohai University,2003
    [8]陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143Chen Y M,Liu H L,Zhou Y D.Analysis on flowcharacteristics of liquefied and post-liquefied sand[J].Chinese Journal of Geotechnical Engineering,2006,28(9):1139-1143
    [9]黄志全,姚海慧,王玲玲,等.砂土液化判别的液化系数法[J].华北水利水电学院学报,2005,26(3):47-50Huang Z Q,Yao HH,Wang L L,et al.LiquefactionCoefficient Method on the Judgment of Sandy SoilLiquefaction[J].Journal of North China Institute ofWater Conservancy and Hydroelectric Power,2005,26(3):47-50
    [10]顾辉,王云仓.南水北调中线京石河北段工程地基土液化判别与对策[J].水利水电技术,2005,36(4):28-30Gu H,Wang Y C.Judgement and counter measurefor liquefaction of foundation soil[J].Water Conser-vancy and Hydroelectric Power Technology,2005,36(4):28-30
    [11]GB50011-2001,建筑抗震设计规范[S]
    [12]谢定义.土动力学[M].西安:西安交通大学出版社,1989Xie D Y.Soil Dynamics[M].Xi-an:Publicity of Xi-anTraffic University,1989
    [13]Iai S,Matsunaga Y,Kameoka T.Strain space plastic-ity model for cyclic mobility[J].Soils and Founda-tions,1992,32(2):1-15
    [14]Di Y,Sato T.A pactical mumerical method for largestrain liquefaction analysis of saturated soils[J].SoilDynamics and Earthquake and Earthquake Engineer-ing,2004,(24):251-260
    [15]Elgamal A,Yang Z H,Parra E.Computational mod-eling of cyclic mobility and post-liquefaction site re-sponse[J].Soil Dynamics and Earthquake Engineer-ing,2002,(22):259-271
    [16]Chan A HC.User manual for DIANA SWANDYNE-II[R].Glasgow,UK:University of Glasgow,1989
    [17]Byrne P M,Park S S,Sharp M,et al.Numericalmodeling of liquefaction and comparison with cen-trifuge tests[J].Journal of Candada Geotechnical En-gineering,2004,(41):193-211
    [18]Wang Z L,Dafalias Y F.Simulation of post-liquefac-tion deformation of sand[A].15thASCE EngineeringMechanics Conference.Columbia University[C].New York,NY,2002:1-8
    [19]YASUSHI SASAKI.Reduction and rehabilitation ofseismic damage to river dikes in Japan[A].Interna-tional Conference on Geotechnical Engineering forDisaster Mitigation and Rehabilitation[C].Singapore:Wald Scientifie Pnblishing Company,2005:213-217
    [20]刘汉龙,井合进,一井康二.大型沉箱式码头岸壁地震反应分析[J].岩土工程学报,1998,20(2):26-30Liu H L,SusumuIai,KojiIchii.Seismic responseanalysis of large-size caisson quay wall[J].ChineseJournal of Geotechnical Engineering,1998,20(2):26-30
    [21]刘汉龙,周健.大地震作用下构造物、地基与流体协同变形分析[J].水利学报,1999,(9):51-55Liu H L,Zhou J.Analysis on deformations due tosoil-structure-water interaction during the strongearthquake[J].Shuili Xuebao,1999,(9):51-55
    [22]刘汉龙,高玉峰,朱伟.地震液化区分布范围对地面大位移的影响[J].河海大学学报,2001,20(5):1-6Liu H L,Gao Y F,Zhu W.Influences of liquefiedarea on large ground displacement[J].Journal of Ho-hai University,2001,20(5):1-6
    [23]刘华北,宋二祥.埋深对地下结构地震液化响应的影响[J].清华大学学报(自然科学版),2005,45(3):301-305Liu H B,Song E X.Effects of burial depth on the liq-uefaction response of underground structures duringan earthquake excitation[J].Journal of Tsinghua Uni-versity(Science and Technology),2005,45(3):301-305
    [24]王刚.砂土液化后大变形的物理机制与本构模型研究[D].北京:清华大学,2005Wang G.Research on physical fundamentals and con-stitutive model of large post-liquefaction deformationof sand[D].Beijing:Tsinghua University,2005

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心