隔震桥梁地震响应非线性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
使用铅芯橡胶支座(LRB)作为隔震设备,分析了一个典型3跨连续梁桥在4种地震作用下的系统响应。采用Bouc-Wen模型模拟LRB的力变形非线性行为,使用有限单元方法建立系统刚度矩阵、质量矩阵和阻尼矩阵,使用龙格库塔法求解非线性方程。研究的重要参数包括桥墩的刚度、支座的屈服强度及屈服后周期,评价的主要依据是主梁振动加速度、桥墩支座位移、桥台支座位移及桥墩底部剪力和弯矩。结果表明:桥墩刚度对地震响应的隔震效果有很大的影响,随着桥墩刚度的减小,隔震效果降低,而LRB对桥墩刚度较大的桥梁有很好的隔震效果;LRB的屈服强度和屈服后周期均对隔震效果有一定的影响,不同的地震激励对系统的影响不同,对某种地震激励,存在一个最优的LRB屈服强度。
The nonlinear response of a typical three span continuous bridge subjected to four earthquake data is analyzed using Lead Rubber Bearings(LRB) to isolate the superstructure from the substructure.The Bouc-Wen model is adopted to simulate the nonlinear hysteric characteristics of force-displacement relationship for LRB.The system property matrix are obtained by using the FEM method,and the Runge-Kutta iterative strategy is used to solve the nonlinear governing equations of motion.This research focuses on assessing the effects of isolation bearings by comparing the seismic response of isolated bridges with the response of corresponding non-isolated bridges through the peak response of the bridges.The important parameters include pier stiffness,yield strength of the LRB,and isolation time period of the LRB.The main evaluating parameters included the superstructure acceleration,bearings displacement at the pier location,and bearings displacement at abutment location.The results show that LRB has significant effectiveness when the pier is very stiff,however,the isolation effectiveness decrease with the pier become more flexibility.Both of the yield strength and the isolation period of the LRB will affect the isolation effectiveness.There is an optimum yield force for the LRB for a bridge subjected to certain seismic excitation.4 tabs,5 figs,9 refs.
引文
[1]Constantinou M C,Kartoum A.Sliding Isolation Sys-tem for Bridges:Experimental Study[J].EarthquakeSpectra,1992,8(3):321 334.
    [2]Tsopelas P,Constantinou M C.Experimental Study ofFPS System in Bridge Seismic Isolation[J].Earth-quake Eng Struc Dyn,1996,25:65 78.
    [3]Turkington D H,Carr A J,Cooke N,Moss P J.De-sign Method for Bridges on Lead-rubber Bearings[J].Journal of Structural Engineering,1989,115(12):3001 3033.
    [4]Ramallo J C.Johnson E A,Spencer B F.“Smart”Base Isolation Systems[J].Journal of Engineering Me-chanics,2002,128(10):1088 1099.
    [5]Hwang J S,Sheng L H.Effective Stiffness and Equiv-alent Damping of Base-isolated Bridges[J].Journal ofStructural Engineering,1993,119(10):3094 3101.
    [6]Chaudhary M T A,Masato A,Fujino Y.PerformanceEvaluation of Base-isolated Yama-age Bridge with HighDamping Rubber Bearings Using Recorded Seismic Da-ta[J].Engineering Structures,2001,23:902 910.
    [7]范立础,王志强.大跨度桥梁隔震设计[M].北京:人民交通出版社,2001.FAN Li-chu,WANG Zhi-qiang.Resist EarthquakeIsolated-design of Large-span Bridges[M].Beijing:People’s Communications Press,2001.
    [8]陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制[J].长安大学学报:自然科学版,2003,23(6):40 43.CHEN Shui-sheng.Magneto-rheological(MR)Damp-ers Semi-active Control of Earthquake Response for El-evated Bridge[J].Journal of Chang’an University:Natural Science Edition,2003,23(6):40 43.
    [9]Jangid R S.Seismic Response of Isolated Bridges[J].Journal of Bride Engineering,2004,9(2):156 166.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心