Sacks体应变仪日波、半日波观测值影响因素分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究了2003—2006年天津宝坻地震台Sacks体应变观测值与固体潮、气压、抽水和降雨的关系,认为固体潮汐是影响体应变日波、半日波变化的第一种主要因素,与其呈同步、线性、正相关关系,月回归系数平均值为0.533,其时间函数存在年变;日、半日周期气压波是影响体应变日波、半日波变化的第二种主要因素,亦与其呈同步、线性、正相关关系,月回归系数平均值为6.28×10-11/Pa,其时间函数无明显年变;机井近距离短时抽水会对体应变日波观测产生同步脉冲干扰作用,这是由地下水动力学效应所致;暴雨会对体应变日波观测产生一定的同步上升干扰,并且降雨量越大作用越明显,这可能与台站所处地区含水层强富水、连通性和导水性好有关。
We analyzed the relations between the observations with Sacks body strain meter and solid tide,atmospheric pressure,pumping and rainfall during 2003—2006 at Baodi seismostation in Tianjin.It is thought that the solid tide is the first major effect factor on the Sacks body strain observations,there is a synchronous,linear and normal correlation between them,their average value of monthly regression coefficient is 0.533,it's time function has the annual variation characteristics.The daily or semi-diurnal atmospheric pressure wave is the second major factor on the Sacks body strain observations,there is also synchronous,linear and normal correlation between them,their average value of monthly regression coefficient is 6.28×10-11/Pa,it's time function have no obvious annual variation.Short-time pumping near Sacks, will bring the synchronous normal interference to the daily wave,it is caused by ground water dynamics effect.Rainstorm will bring the synchronous rise of normal interference to daily wave,and the more heavy the rainfall is,the more clear this action is,it may be related with containing ample water stratum,good connectivity and dank character of the studied area.
引文
1郑文俊,钱家栋,田山.宝坻台地电观测的水文地质背景及其电阻率变化与降雨量和水位变化的关系[J].地震,2007,27(2):81-87. Zheng Wenjun,Qian Jiadong and Tian Shan.Study on geo-hydrologic background of the observation of resistivity onBaodi Station and relation between the variations of resistivitywith rainfall and water level fluctuation[J].Earthquake,2007,27(2):81-87.(in Chinese)
    2张凌空,等.钻孔体应变观测潮汐因子计算模型[J].华北地震科学,1998,16(2):10-14. Zhang Lingkong,et al.Calculation model of tidal factor ob-servation by borehole body strain[J].North China Earth-quake Science,1998,16(2):10-14.(in Chinese)
    3王梅,等.数字化形变观测干扰识别[J].大地测量与地球动力学,2004,24(1):94-98. Wang Mei,et al.Identification of disturbance of digital de-formation observations[J].Journal of Geodesy and Geody-namics,2004,24(1):94-98.(in Chinese)
    4王梅.数字化体应变与气压、水位相关性研究[J].大地测量与地球动力学,2002,22(4):85-88.Wang Mei.study on correlation of digital body strain datawith atmosphere and well water level[J].Journal of Geodesyand Geodynamics,2002,22(4):85-88.(in Chinese)
    5陈鹏,等.地下水位对定点形变观测干扰的抽水实验[J].大地测量与地球动力学,2004,24(3):79-83. Chen Peng,et al.Experiment of pumping from well to exploredisturbance arising from dynamic groundwater level to de-formation observation[J].Journal of Geodesy and Geody-namics,2004,24(3):79-83.(in Chinese)
    6李杰,等.TJ-Ⅱ型钻孔体应变数字化观测资料分析[J].大地测量与地球动力学,2002,22(3):69-74. Li Jie,et al.Analysis of digital observations of TJ-Ⅱbore-hole body strain meters[J].Journal of Geodesy and Geody-namics,2002,22(3):69-74.(in Chinese)
    7张凌空.降雨对体应变的干扰[J].地壳形变与地震,1995,15(3):78-83. Zhang Lingkong.Influences of rainfall on body strain[J].Crustal Deformation and Earthquake,1995,15(3):78-83.(in Chinese)
    8陆远忠,等.基于GIS的地震分析预报系统[M].成都:成都地图出版社,2002. Lu Yuanzhong,et al.System based on GIS for earthquake a-nalysis and prediction[M].Chengdu:Chengdu CartographyPress,2002.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心