天兴洲公铁两用斜拉桥主梁纵向列车制动振动反应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文对天兴洲公铁两用斜拉桥主梁纵向列车制动的振动反应进行了研究。天兴洲大桥是目前在建的世界上跨度最大的公铁两用斜拉桥,由于具有四线铁路,其主梁在列车制动及行车移动荷载作用下会沿纵向产生大幅振动,因此对其列车制动及行车移动荷载反应进行研究尤为必要。文中,首先根据车辆动力学的原理建立了列车制动动力学模型,获得了列车制动力纵向荷载及在制动过程中列车行走所产生的竖向荷载,并建立制动力传递有限元模型,应用有限元分析软件来获取钢轨上制动力及列车行走时引起的桥梁结构节点上的作用力时程。最后对天兴洲公铁两用斜拉桥主梁纵向列车制动及行车移动荷载的振动反应进行了仿真分析,发现了其主梁纵向列车制动反应具有位移大且速度极小的特点。
The longitudinal vibration responses in the deck of the Tianxingzhou cable-stayed bridge,which is the longest span highway and railway combined cable-stayed bridge in the world,subjected to train braking and train traffic is investigated.The deck of the Tianxingzhou Bridge should produce large longitudinal responses induced by train braking and traffic due to four rail lines on it,therefore,it is necessary to investigate its responses subjected to train braking and traffic.In the paper,the train braking dynamic model is established through the theory of vehicle dynamic mechanics,and then the longitudinal forces induced by train braking and the vertical forces caused by train traffic are obtained.Then force time history acting on the bridge structure nodes induced by train braking and train traffic can be obtained on the basis of train braking transferring model through finite element analysis software.Furthermore,the longitudinal vibration responses in the deck of the Tianxinzhou Bridge induced by train braking and train traffic are obtained,and the characteristics of it are summarized.
引文
[1]Fryba L.Quasi-static distribution of braking and starting forces in rails and bridge[J].Rail International,1974,5(11):698-716.
    [2]Kishan H,Traill-Nash R W.A modal method for calculation of highway bridge response with vehicle braking[J].Civil Engineering Transac-tions,1977,19(1):44-50.
    [3]Gupta R K,Traill-Nash R W.Bridge dynamic loading due to road surface irregularities and braking of vehicle[J].Earthquake Engineering andStructural Dynamics,1980,8(1):83-96.
    [4]Mulcahy N L.Bridge response with tractor-trailer vehicle loading[J].Earthquake Engineering and Structural Dynamics,1983,11(5):649-665.
    [5]Toth J,Ruge P.Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behavior of railway bridges[J].Archive ofApplied Mechanics,2001,71(6-7):453-462.
    [6]Chompooming K,Yener M.The influence of roadway surface irregularities and vehicle deceleration on bridge dynamics using the method of lines[J].Journal of Sound and Vibration,1995,183(4):567-589.
    [7]Law S S,Zhu X Q.Bridge dynamic responses due to road surface roughness and braking of vehicle[J].Journal of Sound and Vibration,2005,282(3?5):805-830.
    [8]Ju S H,Lin HT.Afinite element model of vehicle-bridge interaction considering braking and acceleration[J].Journal of Sound and Vibration,2007,303(1-2):46-57.
    [9]李宏年,冯东.铁路桥梁轨面制动力的动态研究[J].铁道学报,1994,16(3):112-117.
    [10]雷俊卿,李宏年,冯东.铁路桥梁列车制动力的试验研究与计算分析[J].工程力学,2006,23(3):134-140.
    [11]阴存欣.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D].北京:铁道部科学研究院博士学位论文,2000.
    [12]列车牵引计算规程[M].北京:铁道部标准计量研究所,1999.
    [13]李宏年.列车制动力荷载及对桥梁作用机理的研究[D].北京:北方交通大学,2002.
    [14]李宏年,朱唏.多点制动力在线-桥系统中传递的计算方法[J].北京:北方交通大学学报,2000,24(1):1-5.
    [15]李宏年,李延枢.制动力作用下线-桥结构动力分析的二次离散方法[J].铁道标准设计,2004(1):29-31.
    [16]刘嘉.漂浮型铁路桥主梁纵向地震、列车制动及行车效应的控制研究[D].武汉:武汉理工大学,2007.
    [17]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心