高尾矿坝的有效应力地震反应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于目前尾矿坝分析方法存在的不足,为研究高尾矿坝的动力稳定性和抗液化能力,系统地提出了高尾矿坝的有效应力地震反应分析方法。在工程地质勘察、静动力试验和静力有限元分析的基础上,采用不排水有效应力和排水有效应力法两种地震反应有限元分析方法,探讨高尾矿坝在地震过程中和地震后的孔隙水压力的产生、扩散和消散规律及其加速度、动应力和孔隙水压力的响应值。分析结果表明:坝体内应力均为压应力,其应力水平均小于1.0,安全系数均大于1.0,坝体内每个单元的抗液化安全系数大于1.5。同时,坝体的抗震性能和抗液化能力明显增强,坝顶部液化区的范围和深度大大地减小。
Based on the shortcomings of analysis methods for high tailing dams in the world,an effective stress analysis method for seismic response of tailing dams is developed in order to study dynamic stability and anti-liquidizing ability of high tailing dams.According to the results of engineering geological prospecting, static and dynamic test and static analysis of Baizhishan tailing dam of 113.5m high,seismic response analysis adopting undrained and drained effective stress finite element methods are carried out.The law of producing,diffusion and dissipation of seismic pore water pressure during and after earthquake is foud,and the responses of the tailing dam's acceleration,seismic dynamic stress and pore water pressure are obtained.The analysis results show that the interior stress is compressive stress,the average stress level is less than 1.0 and the safety coefficient is greater than 1.0.The safety coefficient of anti-liquidizing of each element in the tailing dam is greater than 1.5 according to the seismic response analysis for the tailing dam by effective stress FEM.In addition,the aseismic and anti-liquidizing ability of the tailing dam are strengthened remarkably,and the range and the depth of the liquidizing area on the top of the dam are reduced greatly.
引文
[1]LIUHou-xiang,LI Ning,LIAO Xue,et al.A newtechniqueof combining accretion by cyclone separator and scattertubefor tailings dams[J].Journal of Central South University oftechnology,2004,11(2):185—191.
    [2]Dobry R,Alvarze,L.Seismic failure of Chilean tailingsdams[J].Journal of Soil Mechanics and Foundation Div.,ASCE,1967,93(5):83—108.
    [3]周柳霞.国外部分尾矿坝失事的原因和教训[J].矿冶工程,1990,10(2):64—66.
    [4]冶金部尾矿坝安全调查组.我国冶金矿山尾矿坝安全稳定性技术调查报告[R].北京:冶金工业部,1987.
    [5]陈雪华,律文田,王永和.高速铁路路桥过渡段路基响应特性研究[J].振动与冲击,2006,25(3):95—98.
    [6]穆鲁生,王治平,陈守仁等.选矿厂尾矿设施设计规范ZBJ1—90[S].北京:中国计划出版社,1991.7.
    [7]柳厚祥.高尾矿(土)坝非线性地震反应分析的有限单元法的研究[D].长沙:长沙矿冶研究院,1993.
    [8]Annamaria Cividini,Giancarlo Gioda.Finite-Element Ap-proach to the Erosion and Transport of Fine Particles in Gran-ular Soils[J].International Journal of Geomechanics,ASCE,2004,4(3):191—198.
    [9]盛树磬,窦宜,陶秀珍等.土工试验规程SL237—1999[S].北京:中国水利水电出版社,1999.12.
    [10]Mejia LH,Seed HB.Comparison of2D and 3D dynamic an-alyses of earth dams[J].Journal of the Geotechnical Engi-neering,ASCE,1983,109(11):1383—1398.
    [11]ZHOU J,XU Z Y.3-D dynamic effective stress analysis ofearth/tailings dams[A],Int.Symposium on environmentalgeotechnology[C].Berkeley:California UniversityPress,1986.
    [12]WU Ai-xiang,SUN Ye-zhi,LI Qing-song.Self-organizedcriticality of liquefaction in saturated granules[J].Transac-tions of Nonferrous Metals Society of China,2003,13(1):180—183.
    [13]Bromhead E N.The Stability of Slopes[M].NewYork:Sur-rey University Press,1986.
    [14]WUAi-xiang,GUDe-sheng,SUN Ye-zhi,et al.Experimentand mechanism of vibration liquefaction and compacting ofsaturated bulk solid[J].Journal of Central South Universityof Technology,2001,8(1):34—39.
    [15]邵长江,钱永久.Koyna混凝土重力坝的塑性地震损伤响应分析[J].振动与冲击,2006,25(4):129—131.
    [16]文四平,裘家葵,柳厚祥.西石门铁矿尾矿库优化高筑子坝新工艺与综合防汛措施[J].矿冶工程,1997,17(3):1—5.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心