地基-结构动力相互作用体系中数值仿真的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用数值仿真试验进行结构地震反应的理论和计算分析,将理论分析结果、振动台试验结果和计算机仿真结果三者结合起来,研究和分析地基–结构动力相互作用及其抗震性能。通过数值模拟,解决试验中土压力盒损坏的问题,得到地震动激励下桩–土接触压力峰值的数据,并由此分析桩–土接触压力的大小及其分布规律,提出桩基上的支盘是基础减振的主要构件,并承受动荷载,减轻地震波对上部结构的冲击力,同时消耗上部结构反馈给基础的振动能量。承台和桩基两侧的土压力时程曲线呈反向关系,说明基础在同一时间一侧受压,另一侧受拉。产生这种现象的原因是由于框架结构和承台下的桩–土在振动时的相互作用,并由此导致承台出现转动效应、建筑物产生倾倒的现象。
Combined with results of theory,shaking table test and numerical simulation,dynamical interaction and aseismic capability of soil-structure system are studied and analyzed based on analysis of theory and calculation. The question of ruined earth pressure cell in test is solved,and the contact pressure between soil and pile is found out by the numerical simulation and distributing law of earth pressure. It is explained and sure that branches and disks of the pile are main components of foundation which can reduce shake and bear dynamic load,so they lighten the impact of seismic waves to structure and consume structural seismic energy fed back to foundation. Phenomena of pulling up on one side and pressing down on the other side in the pile foundation are revealed according to reverse relation of time-history curve of earth pressure from the corresponding measuring points on the sides of the pile foundation under seismic action at the same time. The phenomena are produced because of dynamic interaction of structure-pile-soil,which results in that bearing table shows turn effect. This law not only explains essential reason that the buildings are inclined and toppled in the seismic region,but also illuminates and verifies that the aseismic capability of structure plays greatly in the dynamic interaction system.
引文
[1]陈波,吕西林,李培振,等.均匀土–桩基–结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91–99.(CHEN Bo,LU Xilin,LI Peizhen,et al.Computational analysis of dynamic homogeneous soil-pile-structure interaction[J].Earthquake Engineering and Engineering Vibration,2002,22(3):91–99.(in Chinese))
    [2]JUN T,NOBUO F,SHIGEHARU Y.Experimental evaluation of dynamic characteristics of low and medium-rise buildings with soil-structure interaction[C]//The12th World Conference on Earthquake Engineering.Auckland,New Zealand:[s.n.],2000:2244–2252.
    [3]SABINS G M,HARRIS H G.Structural modeling and experimental techniques[M].NJ:Prentice Hall,Englewood Cliffs,1983.
    [4]钱德玲,赵元一,王东坡.桩–土–结构体系动力相互作用的试验研究[J].上海交通大学学报,2005,39(11):1856–1861.(QIAN Deling,ZHAO Yuanyi,WANG Dongpo.Experimental study on thedynamic interaction of squeezed branch pile-soil-structure system by shaking table test[J].Journal of Shanghai Jiaotong University,2005,39(11):1856–1861.(in Chinese))
    [5]LU X L,CHEN Y Q,CHEN B,et al.Shaking table model test on dynamic soil-structure interaction system[J].Journal of Asian Architecture and Building Engineering,2002,1(1):55–63.
    [6]ENRIQUE LUCO J.A simple model for structural control including soil-structure interaction effects[J].Earthquake Engineering and Structural Dynamics,1998,27(3):225–242
    [7]SMITH H.Effective optimal structural control of soil-structure interaction systems[J].Earthquake Engineering and Structure Dynamics,1997,26(5):549–570.
    [8]CELEBI M.Seismic response of two adjacent buildings[J].Journal of Structure Engineering,ASCE,1993,119(8):2477–2492.
    [9]陈波,吕西林,李培振,等.用ANSYS模拟结构–地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126–131.(CHEN Bo,LU Xilin,LI Peizhen,et al.Modeling of dynamic soil-structure interaction by ANSYS program[J].Earthquake Engineering and Engineering Vibration,2002,22(1):126–131.(in Chinese))
    [10]MEYMAND P.Shake table tests:seismic soil-pile-superstructure interaction[J].PEER Center News,1998,1(2):1–4.
    [11]PIONISIO B,AKRAM Y.A hybrid time frequency domain formulation for non-linear soil-structure interaction[J].Earthquake Engineering and Structural Dynamics,1998,27(7):673–685.
    [12]CHEN Y.Modeling and analysis methods of bridge and their effects on seismic responses[J].Computers and Structures,1996,59(1):81–98.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心