不同地震激励下大跨度斜拉桥的地震反应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
考虑地震波的行波效应、部分相干效应和局部场地效应,建立了不同机制的地震激励下大跨度斜拉桥地震反应的分析方法并以正在建设的主跨1 018 m的香港某大跨度斜拉桥为例,数值仿真了大跨度斜拉桥在确定性地震波一致激励、行波激励以及随机地震动场多点激励下的地震反应。结果表明:与确定性地震波一致激励相比,在确定性地震波行波激励以及考虑空间变化的随机地震动场激励下,斜拉桥的纵向位移反应明显减小,而其主跨跨中竖向位移反应明显增大。由此得出结论:对于大跨度斜拉桥,一致地震激励不能控制其抗震设计,应考虑行波激励和随机地震动场多点激励对其地震响应的影响。
In this paper,the methods for the seismic response analysis of the long-span cable-stayed bridges excited by different patterns of earthquakes are built.Taking a cable-stayed bridge with main span of 1018 m under construction as an example,the numerical simulation for the seismic responses of the long-span cable-stayed bridges is performed under the uniform excitation and the travelling wave excitation of the deterministic earthquake or the multi-support excitation of the random earthquake ground motion.The results show that under the excitations,the travelling wave of the deterministic earthquake and the random earthquake ground motion with spatial variability by comparing with the uniform excitation of the deterministic earthquake,the longitudinal displacement of the cable-stayed bridge is clearly decreased,and its vertical displacement at the midpoint of the main span is significantly increased.A conclusion is given that the uniform seismic excitation is not able to control the seismic design for the long-span cable-stayed bridge,and the influence of the travelling wave excitation and the multi-support excitation of the random earthquake ground motion on the seismic responses of the long-span cable-stayed bridge must be considered.
引文
[1]ALLAM S M,DATTA T K.Seismic behaviour of ca-ble-stayed bridges under multi-component random gr-ound motion[J].Engineering Structures,1999,21(1):62—74.
    [2]SOYLUK K,DUMANOGLU A A,TUNA M E.Random vibration and deterministic analysis of cable-stayed bridges to asynchronous ground motion[J].Structural Engineering and Mechanics,2004,18(2):231—246.
    [3]NAZMY A S,ABDEL-GHAFFAR A M.Effects ofground motion spatial variability on the response ofthe cable-stayed bridges[J].Earthquake Engineering&Structural Dynamics,1992,21(1):1—21.
    [4]HARICHANDRAN R S,HAWWARI A,SWEIDANB N.Response of long-span bridges to spatially var-ying ground motion[J].Journal of Structural Engi-neering,1996,122(5):476—484.
    [5]SOYLUK K,DUMANOGLU A A.Spatial variabilityeffects of ground motions on cable-stayed bridges[J].Soil Dynamics and Earthquake Engineering,2004,24(3):241—250.
    [6]史志利,李忠献.随机地震动场多点激励下大跨度桥梁抗震分析方法[J].地震工程与工程振动,2003,23(4):124—130.
    [7]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55—62.
    [8]王光远,程耿东,邵卓民,等.抗震结构的最优设防烈度与可靠度[M].北京:科学出版社,1999.
    [9]李建中,袁万城.斜拉桥减震、耗能体系非线性纵向地震反应分析[J].中国公路学报,1998,11(1):71—76.
    [10]于泳波,万振江.减震技术在公路桥梁中的应用及地震反应分析[J].长安大学学报(自然科学版),2004,24(2):58—60.
    [11]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
    [12]张戊社,杜彦良.基于光纤光栅的斜拉桥索力在线监测[J].交通运输工程学报,2003,3(4):22—24.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心