纳米氧化锡负极材料锂化反应机理的原位透射电镜研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In situ observation of lithiation mechanism of SnO_2 nanoparticles
  • 作者:熊雨薇 ; 尹奎波 ; 文一峰 ; 辛磊 ; 姚利兵 ; 朱重阳 ; 孙立涛
  • 英文作者:Xiong Yu-Wei;Yin Kui-Bo;Wen Yi-Feng;Xin Lei;Yao Li-Bing;Zhu Chong-Yang;Sun Li-Tao;SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University;
  • 关键词:SnO_2纳米颗粒 ; 锂化反应机理 ; 原位表征
  • 英文关键词:SnO_2 nanoparticles;;lithium reaction mechanism;;in situ characterization
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:东南大学微电子机械系统教育部重点实验室SEU-FEI纳皮米中心;
  • 出版日期:2019-08-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点基础研究发展计划(批准号:2017YFA0204800);; 国家自然科学基金(批准号:11674052,11525415,51420105003)资助的课题~~
  • 语种:中文;
  • 页:WLXB201915033
  • 页数:7
  • CN:15
  • ISSN:11-1958/O4
  • 分类号:330-336
摘要
二氧化锡(SnO_2)材料因具有储量丰富、理论容量高、嵌脱锂电位安全等一系列优点,在锂离子电池负极材料研究中受到广泛关注.然而, SnO_2纳米材料在锂化反应过程中的机理,尤其是第一步转化反应是否可逆尚存在争议.本文利用常规水热法成功制备了平均粒径为4.4 nm的SnO_2纳米颗粒,并在透射电子显微镜中构建了微型锂离子电池原型器件,对SnO_2纳米颗粒在充放电过程中的微观形貌和物相演变进行原位表征.实验结果表明, SnO_2纳米颗粒在嵌锂过程中率先生成了纳米尺寸的中间相Sn,随后发生了合金化反应转变为Li_(22)Sn_5相.脱锂反应后, Li_(22)Sn_5相转变为SnO_2.分析认为,纳米晶界阻碍了Sn颗粒的聚集长大,使得Sn和Li_2O能够充分接触,进而使脱锂反应能够完全进行,生成SnO_2.研究结果对于如何提高SnO_2基电极材料可逆比容量和循环性能具有一定的指导意义.
        Tin oxide(SnO_2) has attracted a lot of attention among lithium ion battery anode materials due to its rich reserves, high theoretical capacity, and safe potential. However, the mechanism of the SnO_2 nano materials in the lithiation-delithiation reaction, especially whether the first-step conversion reaction is reversible, is still controversial. In this paper, SnO2 nanoparticles with an average particle size of 4.4 nm are successfully prepared via a simple hydrothermal method. A nanosized lithium ion battery that enables the in situ electrochemical experiments of SnO_2 nanoparticles is constructed to investigate the electrochemical behavior of SnO_2 in lithiation-delithiation process. Briefly, the nanosized electrochemical cell consists of a SnO_2 working electrode, a metal lithium(Li) counter electrode on a sharp tungsten probe, and a solid electrolyte of lithium oxide(Li_2O)layer naturally grown on the surface of metal Li. Then, the whole lithiation-delithiation process of SnO_2 nanocrystals is tracked in real time. When a constant potential of –2 V is applied to the SnO_2 with respect to lithium, lithium ions begin to diffuse from one side of the nanoparticles, which is in contact with the Li/Li_2O layer, and gradually propagate to the other side. Upon the lithiation, a two-step conversion reaction mechanism is revealed: SnO_2 is first converted into intermediate phase of Sn with an average diameter of 4.2 nm which is then further converted into Li22 Sn5. Upon the delithiation, a potential of 2 V is applied and Li_(22)Sn_5 phase can be reconverted into SnO_2 phase when completely delithiated. It is because the interfaces and grain boundaries of nano-sized SnO_2 may impede the Sn diffusing from one grain into another during lithiation/delithiation and then suppress the coarsening of Sn, and enable the Li_2O and Sn to be sufficiently contacted with each other and then converted into SnO_2. This work provides a valuable insight into an understanding of phase evolution in the lithiation-delithiation process of SnO_2 and the results are of great significance for improving the reversible capacity and cycle performance of lithium ion batteries with SnO_2 electrodes.
引文
[1]Paek S M,Yoo E,Honma I 2009 Nano Lett.9 72
    [2]Kojima T,Ishizu T,Horiba T,Yoshikawa M 2009 J.Power Sources 189 859
    [3]Nitta N,Yushin G 2014 Part.Part.Syst.Charact.31 317
    [4]Armand M,Tarascon J M 2008 Nature 451 652
    [5]Shao-Horn Y,Croguennec L,Delmas C,Nelson E C,O'Keefe M A 2003 Nat.Mater.2 464
    [6]Ji Y R,Zhang Q H,Gu L 2018 J.Chin.Electron Microsc.Soc.37 532(in Chinese)[季怡汝,张庆华,谷林2018电子显微学报37 532]
    [7]Hou X H,Yu H W,Hu S J 2010 Acta Phys.Sin.59 8226(in Chinese)[侯贤华,余洪文,胡社军2010物理学报59 8226]
    [8]Hou X H,Hu S J,Shi L 2009 Acta Phys.Sin.59 2109(in Chinese)[侯贤华,胡社军,石璐2009物理学报59 2109]
    [9]Wu F,Li X,Wang Z,Guo H J,He Z J,Zhang Q,Xiong X H,Yue P 2012 J.Power Sources 202 374
    [10]Wu F,Li X,Wang Z,Guo H J 2013 Nanoscale 5 6936
    [11]Sun L,Gao Y M,Xiao B,Li Y F,Wang G L 2013 J.Alloy.Compd.579 457
    [12]Tian Q H,Tian Y,Zhang Z X,Yang L,Hirano S I 2014 J.Power Sources 269 479
    [13]Guo X W,Fang X P,Sun Y,Shen L Y,Wang Z X,Chen LQ 2013 J.Power Sources 226 75
    [14]Chen L,Wu P,Wang H,Ye Y,Xu B,Cao G P,Zhou Y M,Lu T H,Yang Y S 2014 J.Power Sources 247 178
    [15]Han Q Y,Zai J T,Xiao Y L,Li B,Xu M,Qian X F 2013RSC Adv.3 20573
    [16]Chen J S,Lou X W 2013 Small 9 1877
    [17]Ye H J,Li H Q,Jiang F Q,Yin J,Zhu H 2018 Electrochim.Acta 266 170
    [18]Xiu M M,Qian X Y 2018 J.Chin.Electron Microsc.Soc.3715(in Chinese)[刘美梅,钱翔英2018电子显微学报37 15]
    [19]Youn S G,Lee I H,Yoon C S,Kim C K,Sun Y K,Lee Y S,Yoshio M 2002 J.Power Sources 108 97
    [20]Kraytsberg A,Ein-Eli Y 2011 J.Power Sources 196 886
    [21]Thackeray M M,Johnson C S,Kahaian A J,Kepler K D,Vaughey J T,Shao-Horn Y,Hackney S A 1999 J.Power Sources 81-82 60
    [22]Idota Y,Kubota T,Matsufuji A,Maekawa Y,Miyasaka T1997 Science 276 1395
    [23]Hu R Z,Sun W,Liu H,Zeng M Q,Zhu M 2013 Nanoscale 511971
    [24]Brousse T,Retoux R,Herterich U,Schleich D M 1998 J.Electrochem.Soc.145 1
    [25]Retoux R,Brousse T,Schleich D M 1999 J.Electrochem.Soc.146 2472
    [26]Lou X W,Li C M,Archer L A 2009 Adv.Mat.21 2536
    [27]Holmberg V C,Panthani M G,Korgel B A 2009 Science 326405
    [28]Zheng H M,Smith R K,Jun Y W,Kisielowski C,Dahmen U,Alivisatos A P 2009 Science 324 1309
    [29]Huang J Y,Zhong L,Wang C M,Sullivan J P,Xu W,Zhang L Q,Mao Scott X,Hudak N S,Liu X H,Subramanian A,Fan H Y,Qi L,Kushima A,Li J 2010 Science 330 1515
    [30]Hu R Z,Zhang H P,Lu Z C,Liu J,Zeng M Q,Yang L C,Yuan B,Zhu M 2018 Nano Energy 45 255
    [31]Hu R Z,Chen D C,Waller G,Ouyang Y P,Chen Y,Zhao B,Rainwater B,Yang C H,Zhu M,Liu M L 2016 Energy Environ.Sci.9 595
    [32]Li B S,Feng J K,Qian Y T,Xiong S L 2015 J.Mater.Chem.A 3 10336
    [33]Wang C M,Xu W,Liu J,Zhang J G,Saraf L V,Arey B W,Choi D,Yang Z G,Xiao J,Thevuthasan S,Baer D R 2011Nano Lett.11 1874
    [34]Meduri P,Clark E,Dayalan E,Sumanasekera G U,Sunkara M K 2011 Energy Environ.Sci.4 1695
    [35]Meduri P,Pendyala C,Kumar V,Sumanasekera G U,Sunkara M K 2009 Nano Lett.9 612
    [36]Haines J,Leger J M 1997 Phys.Rev.B 55 11144
    [37]Liu L G 1978 Science 199 422
    [38]Chen Z W,Lai J K L,Shek C H 2006 Appl.Phys.Lett.89231902
    [39]Carvalho M H,Pereira E C,de Oliveira A J A 2018 RSCAdv.8 3958

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700