高性能复合材料在直升机结构上的应用展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application Predication of Higher-Performance Composites in Rotorcraft Structures
  • 作者:谌广昌 ; 吴明忠 ; 陈普会
  • 英文作者:CHEN Guangchang;WU Mingzhong;CHEN Puhui;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics;China Helicopter Research and Development Institute;
  • 关键词:高性能复合材料 ; 直升机 ; 结构 ; 技术代差
  • 英文关键词:Higher-performance composite material;;Rotorcraft;;Structure;;Technical gap
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:南京航空航天大学机械结构力学及控制国家重点实验室;中国直升机设计研究所;
  • 出版日期:2019-06-15
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 语种:中文;
  • 页:HKGJ201912029
  • 页数:8
  • CN:12
  • ISSN:11-4387/V
  • 分类号:85-92
摘要
出于减重和效率提升等目的,纤维增强复合材料在直升机结构上的用量日益增加。阐述了直升机结构设计特点与高性能复合材料应用的最佳比配性,介绍了国外直升机复合材料典型应用案例与发展趋势,总结了国内直升机复合材料应用现状与国外差距,展望了高性能复合材料未来技术需求。研究表明,国内直升机复合材料应用对比欧美国家存在技术代差;高性能结构复合材料、先进功能复合材料、结构功能一体化复合材料、低成本复合材料整体成型及复合材料高置信度虚拟认证技术是未来发展重点。
        Fiber-reinforced composite materials are increasingly used in the rotorcraft structures to reduce weight and improve efficiency. The rotorcraft industry is constantly in need of higher-performance materials that offer improved mechanical strength and stiffness at a lower weight. This work introduces the composite materials typical application cases and development trends of foreign rotorcraft structures and summarizes the state-of-the-art of civil rotorcraft composite structures, also presents the future technical requirements of higher-performance composites. The overview shows that there exist technical gaps for rotorcraft composite applications between the civil and western. The conclusion shows that higher-performance structural composites, advanced functional composites, structural and functional integrated composite materials, low-cost composite integrated technologies and high-confidence virtual validation technologies of composites will be the future focus.
引文
[1]MRAZOVA M.Advanced composite materials of the future in aerospace industry[J].Incas Bulletin,2013,5(3):139-150.
    [2]杨乃宾,章怡宁.复合材料飞机结构设计[M].北京:航空工业出版社,2002.YANG Naibin,ZHANG Yining.Aircraft composite structure design[M].Beijing:Aviation Industry Press,2002.
    [3]胡和平,邓景辉.直升机旋翼桨叶复合材料选材现状与分析[J].直升机技术,2001(1):1-5.HU Heping,DENG Jinghui.Status and analysis of selected composite material for helicopter rotor blade[J].Technology of Helicopter,2001(1):1-5.
    [4]孟雷,程小全,胡仁伟,等.直升机旋翼复合材料桨叶结构设计与选材分析[J].高科技纤维与应用,2014,39(2):16-23.MENG Lei,CHENG Xiaoquan,HU Renwei,et al.Material selection in helicopter composite blade structure design[J].Hitech-Fiber and Application,2014,39(2):16-23.
    [5]黄文俊,何志平,程小全.直升机复合材料应用现状与发展[J].高科技纤维与应用,2016,41(5):7-13.HUANG Wenjun,HE Zhiping,CHENG Xiaoquan.Development and application analysis of high modulus glass fiber for helicopter blade[J].Hitech-Fiber and Application,2016,41(5):7-13.
    [6]张冰波,郭恩玉,吕本全,等.复合材料在直升机上的应用[J].科技创新与应用,2013(33):55.ZHANG Bingbo,GUO Enyu,LüBenquan,et al.The composite application in helicopter[J].Technology Innovation and Application,2013(33):55.
    [7]庄开莲,李萍.国外旋翼主动控制技术研究进展[J].直升机技术,2008(1):59-64ZHUANG Kailian,LI Ping.The state-of-the-art of foreign technologies for active control to helicopter[J].Technology of Helicopter,2008(1):59-64.
    [8]MASSEY S J,KRESHOCK A R,SEKULA M K.Coupled CFD/CSD analysis of an active-twist rotor in a wind tunnel with experimental validation[C]//AHS 71st Annual Forum,Virginia Beach,2015.
    [9]THORNBURGH R P,KRESHOCK A R.Continuous trailingedge flaps for primary flight control of a helicopter main rotor[C]//AHS70th Annual Forum.Montréal,Québec,2014.
    [10]DAN CA,MALINOWSKI P.Validation of macro fiber composites for strain measurement in structural health monitoring applications of complex aerospace structures[C]//Proceeding of the 9th International Conference on Structural Dynamics,Porto,2014.
    [11]SIPPEL T.AEC considerations in rotorcraft composites development[C].Composites in Transportation,Grapevine,2013.
    [12]WEIMER C.Composites in aerospace-future challenges,needs and opportunities[M].Toulouse:Airbus Group,2014.
    [13]GARDINER G.Composites help bell V-280 toward future vertical lift[J].Composites World,2016(25):1-8.
    [14]BESON J M,CELLI M A.H-160 Helicopter:development of a carbon thermoplastic hub[C]//42nd European Rotorcraft Forum,Lille,2016.
    [15]JOHNM,ZACHARY A.The rmoplastic composite driveshafts for vertical flight:progression to TRL6[C]//AHS 71st Annual Forum,Virginia Beach,2015.
    [16]KILMAIN C J.Composite application for rotorcraft system housings[C]//AHS 61st Annual Forum,Grapevine,2005.
    [17]GARHART J.Implementation of carbon fiber composites in rotorcraft transmission housing applications[C]//AHS 61st Annual Forum,Grapevine,2005.
    [18]REDDY D J.Composites in rotorcraft industry and damage tolerance requirements[C]//Presented at FAA Composites Workshop,Chichago,2006.
    [19]杨乃宾,倪先平.直升机复合材料结构设计[M].北京:国防工业出版社,2008.YANG Ranbin,NI Xianping.Composite structures design for helicopter[M].Beijing:National Defence Industry Press,2008.
    [20]NAMPY S N,SMITH E C.Advanced grid-stiffened composite shells for heavy-lift helicopter blade spars[C]//55th AIAA/ASMe/ASCE/AHS/SC Structures,Structural Dynamics,And Materials Conference,Maryland,2014.
    [21]JOUIN P,RICE B P.Materials technologies for a composite helicopter main rotor blade[C]//56th AHS Phoenix,Arizona,2000.
    [22]BAILEY B.Investigation of a composite hingless helicopter rotor blade with integral actuators[D].Ottawa:Carleton University,2000.
    [23]黄文俊,李满福.直升机旋翼设计技术应用现状及发展综述[J].航空制造技术,2001,44(17):32-35.HUANG Wenjun,LI Manfu.Application and development of rotor design technology for helicopter[J].Aeronautical Manufacturing Technology,2001,44(17):32-35.
    [24]LUZETSKY H R,MICHASIOW J.Design development of light weight thermoplastic composite cargo floor for helicopter application[C]//74th AHS Phoenix,Arizona,2018.
    [25]LUDIN D,RENNIGER M.The development of a floor former concept incorporating energy-absorbing composite tubes[C]//65th AHS.Grapevine,2009.
    [26]SEN J K,LINDSAY W E.Innovative manufacturing processes for a lightweight,affordable composite helicopter airframe[C]//28th European Rotorcraft Forum,Bristol,2002.
    [27]THUIS H S J,WIGGENRAAD J F M.Composite landing gear components made with RTM[C]//60th AHS.Grapevine,Texas,2004.
    [28]DEVIRES H P J.Development of a main landing gear attachment fitting using composite material and resign transfer moulding[R].Amsterdam:National Aerospace Laboratory,2011.
    [29]THUIS H G S J.Developments of composite manufacturing technologies at NLR[R].Amsterdam:National Aerospace Laboratory,2005.
    [30]THUIS H G S J.The development of composite landing gear components for aerospace applications[R].Amsterdam:National Aerospace Laboratory,2004.
    [31]THUIS H G S J.Development of resign transfer moulding technology at NLR[R].Amsterdam:National Aerospace Laboratory,2003.
    [32]GOODWORTH A.Rapid parametric design of advanced composite structures on the survivable affordable repairable airframe program[C]//62nd AHS.Phoenix,2006.
    [33]CARTENSEN T A,GOODWORTH L.Development and validation of a virtual prototype airframe design as part of the survivable affordable repairable airframe program[C]//64th AHS.Montréal,2008.
    [34]GOODWORTH A,SEN J.Us army-Boeing RWSTD-advanced composite manufacturing for an affordable helicopter fuselage[C]//58th AHS.Montréal,Québec,2002.
    [35]TORRES M,JONDA W.Eurocopter research in composite fuselage to maintain the production cost below the target[C]//51st AHS.Virginia Beach,1997.
    [36]Future vertical lift(FVL)capability set#3 request for information(RFI)#2[M].Maryland:Army Aviation Center of Excellence,2016.
    [37]HIRSCHBERG M.JMR technology demonstration update:the road to future vertical lift[J].Vertiflite,2016,62(1):22-27.
    [38]COLUCCI F.Compound Interesting[J].Vertiflite,2016,62(1):28-30.
    [39]WHITTLE R.Build them and you will learn[J].Vertiflite,2016,62(1):32-35.
    [40]WHITTLE R.Karem aircraft building new tiltrotor blades[J].Vertiflite,2016,62(1):36-39.
    [41]COLUCCI F.Scaling up success[J].Vertiflite,2016,62(1):40-43.
    [42]CHASE N.Joint multi-role technology demonstrator(JMRTD)[C]//JMR TD Pre-Solicitation Conference.Williamsburg,2012.
    [43]CHASE N.Joint multi-role technology demonstrator(JMRTD)Update[C]//JMR TD Pre-Solicitation Conference.Williamsburg,2012.
    [44]PETERSON G L,SAHA A B.JMR development[C]//72nd AHS.West Palm Beach,2016.
    [45]DECKERR,BAINERS A.Afford abledesign and manufacturing of the V-280 wing[C]//73nd AHS.Fort Worth,2017.
    [46]PALCIC P X,HE S.The road to first flight:development of the CH-53K drive system[C]//73nd AHS.Fort Worth,2017.
    [47]GARDINER G.Automating the CH-53K’s composite flexbeams[J].High-Performance Composites,2014,22(5):74-79.
    [48]EMMERLING S,AHCI-EZGI E,BESSON J M.The most recent rules on fatigue and damage tolerance application and challenges at airbus helicopters[C]//73nd AHS.Fort Worth,2017.
    [49]MAKEEV A,BAKIS C.Advanced composite materials technology for rotorcraft[C]//39th European Rotorcraft Forum.Moscow,2013.
    [50]HE Y,MAKEEV A,SHONKWILER B.Characterization of nonlinear shear properties for composite materials using digital image correlation and finite element analysis[J].Composite Science and Technology,2012,73:64-71
    [51]SCHILLING P J,KAREDLA B R.X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites[J].Composite Science and Technology,2005,65(14):2071-2078.
    [52]NIKSHIKOV Y,AIROLDI L.Measurement of voids in composites by X-ray computed tomography[J].Composites Science and Technology,2013,89:89-97.
    [53]MCCARTHYD K.Dual-use structures:helicopter empennage antenna prototype[C]//71st AHS.Virginia Beach,2015.
    [54]TYRRELL S,ROBESON M.Dual-use structures:Composite wing with structural antenna aperture[C]//72nd AHS,West Palm Beach,2016.
    [55]GRENIER I.Interactive work instructions for Bell 525relentless[C]//71st AHS.Virginia Beach,2015.
    [56]QUINLAN E,HUGHES S.Evaluation of laminate quality for out of autoclave manufacturing for a complex shaped crew door[C]//69th AHS.Phoenix,2013.
    [57]MAKEEVA,SEONG,NIKISHKOV Y.Analysis methods improving confidence in material qualification for laminated composites[C]//72ndAHS.West Palm Beach,2016.
    [58]CHEN J H,GINGRAS R.Manufacturing of composite helicopter tailboom using AFP process[C]//70th AHS.Montréal,Québec,2014.
    [59]Engineering Handbook Series for Aircraft Repair.General manual for structural repair[M].Tinker:The Secretary of the Air Force,2006.
    [60]THILL C,ETCHES J.Morphing skins[J].The Aeronautical Journal,2008,63(5):1-23.
    [61]FUSI F.Robust shape optimization of fixed and morphing rotorcraft airfoils[M].Milan:Politecnico Di Milano,2015.
    [62]DAVIS O E.“Rotorcraft-back to the future”a discussion of the past,present,and future of rotorcraft[C]//National President of Associazione Arma Aeronautica,The future of Rotary Wing Symposium.Rome,2012.
    [63]Composite Materials Handbook.Building block approach for composite structures(Vol3)[M].Wichita:SAE International,2012.
    [64]RUFFNER D,JOUIN P.Material qualification methodology for a helicopter composite main rotor blade[C]//56th AHS.Virginia,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700