利用差分干涉雷达测量技术(D-InSAR)提取同震形变场
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
简要介绍了合成孔径雷达干涉测量技术、差分干涉雷达测量技术,并对干涉测量精度进行了简单讨论.以西藏玛尼地区为例,通过三通差分干涉处理,获取了玛尼地震同震形变场.结果表明:形变场长200 km、宽115 km.干涉条纹以北东东向发震断层——玛尔盖茶卡断层为中心分布,且基本与发震断层平行;通过对干涉形变图进行分析,发震断层可分为3段,其中西段长约23 km,中段长约60 km,东段长约26 km,整个发震断层共长110 km;震中附近最大隆起斜距向位移量为162.4 cm,断层西侧最大沉降斜距向位移量为103.6 cm,震中最大地面水平位错为7.96 m.
Interferometry Synthetic Aperture Radar (InSAR) is a kind of new earth observation technique and great development has been made in the recent ten years. In the paper, InSAR and Differential Interferometric Synthetic Aperture Radar (D-InSAR) are generally introduced; then the factors affecting the data accuracy are primarily discussed. Mani earthquake was selected as an example to obtain the coseismic deformation field with the three-pass differential interferometric processing method. The results show that the coseismic deformation field is about 200 km in length and 115 km in width. The interferometric fringes spread in the area with the NEE-trending seismogenic fault the Margaichaka fault as the center and they are primarily parallel to the fault. Based on the analysis to the interferogram, the seismogenic fault can be divided into three segments. The whole fault is about 110 km and the length of each segment from the west to the east is about 23 km, 60 km and 26 km. The maximum uplifting displacement in the side-looking direction near the seismic center is about 162.4 cm, the maximum subsiding displacement in the side-looking direction in the western part of the fault is about 103.6 cm, and the maximum horizontal surface dislocation near the seismic center is about 7.96 m.
引文
高原,郑斯华.2001.使用振型叠加方法研究1997年11月8日西藏玛尼MS7.9地震震源机制[A].见:马宗晋主编,青藏高原岩石圈现今变动与动力学研究论文集[C].北京:地震出版社,240~248
    单新建,叶洪.1998.干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用[J].地震学报,20(6):647~655
    单新建,刘浩.2001.利用干涉合成孔径雷达技术提取数字地面模型(DEM)[J].国土资源遥感,2:43~47
    舒宁编著.1997.雷达遥感原理[M].北京:测绘出版社,1~10
    许力生,陈运泰.1999.1997年中国西藏玛尼MS7.9地震的时空破裂过程[J].地震学报,21(5):449~459
    徐锡伟,宋方敏,杨晓平,等.2000.中国大陆地表破裂型潜在震源区的地震地质学综合判定[J].震情研究,44(1):14~26
    FreysteinnS.1999.Opening of an eruptive fissure and seaward displacement atPiton de laFournaise volcano measured byRADARSAT satellite radar interferometry[J].GeophysResLett,26(5):533~536
    KurtK L,ArnaudS,DominiqueJ.1995.Estimation of an earthquake focal mechanism from a satellite radar interferogram:Application to theDecember41992
    Landers aftershock[J].GeophysResLett,22(9):1037~1040
    MassonnetD,RossiM,CarmonaC,et al.1993.The displacement field of theLanders earthquake mapped by radar interferometry[J].Nature,364:138~142
    MeyerB,ArmijoR,MassonnetD,et al.1996.The1995Grevena(NorthernGreece) earthquake:Fault model constrained with tectonic observation andSAR interferometry[J].GeophysResLett,23(19):2677~2680
    PeltzerG,CrampeF,KingG,et al.1999.Evidence of nonlinear elasticity of the crust from theMW7.6Mani(Tibet) earthquake[J].Science,286:272~276
    RodriguezE.1992.Theory and design of interferometric synthetic aperture radars[J].IEEE.Proceedings-F,139:147~159
    ZebkerH A,RosenP A,GoldsteinR M,et al.1994.On the derivation of coseismic displacement fields using differential radar interferometry:TheLanders earthquake[J].J GeophysRes,99B(10):19617~19634

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心