渡槽结构考虑流固耦合的横向地震响应研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
渡槽结构是一种薄壁杆件结构,有其自身特点,依据符拉索夫(Volasov)及豪斯纳尔(Housner)理论建立考虑槽内水体流固耦合的渡槽薄壁结构空间地震响应分析模型,该模型综合考虑了渡槽横向、竖向、纵向、自由扭转、约束扭转变形以及槽内水体对槽身的流-固相互作用等。由能量原理推导给出了渡槽薄壁梁段单元刚度矩阵及质量矩阵,建立了渡槽结构无水空载及槽内有水时横向地震响应计算方程。利用该模型对某单墩渡槽进行了多工况地震时程响应计算,经与解析解比较,证明模型的正确性,同时说明在地震荷载作用下,渡槽在无水空载及设计水位时的横向位移有所变化。模型计算简单易行,是考虑槽内水体流固耦合作用的渡槽薄壁结构实用的地震响应分析模型。
Aqueduct is a kind of thin-walled bar structures. Based on the theory of Volasov and Housner, a seismic response analysis model of thin-walled space aqueduct with fluid-structure coupling is established in this paper. In this model, transverse deformation, vertical deformation, longitudinal deformation, free torsion deformation, constrained torsion deformation and fluid-structure coupling between aqueduct and water body are all taken into consideration. The element stiffness matrix and the mass matrix of the thin-walled beam portion of aqueduct are derived by energy principle and the transverse seismic response equations are established without water or with design level water in aqueduct, respectively. Using the model, the seismic time-history responses of a single-pier aqueduct are calculated, and the model is verified through the comparison with analytical solution. Moreover, it is found that the seismic responses are different in the two cases of no water and design level water. The model is shown to be simple and practical for aqueduct's seismic response analysis with fluid-structure coupling.
引文
[1]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.115-154.JuRongchu,ZengXinchuan.Coupled vibration theory for elastic structure and fluid[M].Beijing:SeismologicalPress,1983.115-154.(inChinese)
    [2]曾庆元.弹性系统动力学总势能不变值原理[J].华中理工大学学报,2000,28(1):1-3.ZengQingyuan.The principle of total potential energy with stationary value in elastic system dynamics[J]. Journal ofHuazhongUniversity ofScience andTechnology,2000,28(1):1-3.(inChinese)
    [3]李遇春.大型高墩渡槽横向地震反应分析[J].武汉水利电力大学学报,1999,(3):43-46.LiYuchun.Analysis of transverse seismic responses of large scale tall-pier aqueduct[J].Journal ofWuhanUniversity ofWaterConservancy andHydropower,1999,(3):43-46.(inChinese)
    [4]CloughR W,PenzienJ.Dynamics of structures[M].NewYork:McGraw-Hill,Inc,1993.204-215.
    [5]俞载道.结构动力学基础[M].上海:同济大学出版社,1987.149-174.YuZaidao.Fundamentals of structural dynamics[M].Shanghai:TongjiUniversityPress,1987.149-174.(inChinese)
    [6]王文亮.结构动力学[M].上海:复旦大学出版社,1993.251-262.WangWenliang.Dynamics of structures[M].Shanghai:FudanUniversityPress,1993.251-262.(inChinese)
    [7]YuchunLi,MenglinLou.Evaluation of vertical seismic response for a large-scale beam-supported aqueduct[J].EarthquakeEngineering andStructuralDynamics,2003,32:1-14.
    [8]OkamotoT,KawaharaM.Two-dimensional sloshing analysis by lagrangian finite element method[J].Int.J.Numer.MethodsFluids,1990,11:456-477.
    [9]ChenW, harounM A,LiuF.Large amplitude liquid sloshing in seismically excited tanks[J].EarthquakeEngineering andStructuralDynamics,1996,25:653-669.
    [10]A M I Sweedan,A A EI Damatty.Experimental identifyication of the vibration modes of liquid-filled conical tanks and validation of a numerical model[J].EarthquakeEngineering andStructuralDynamics,2003,32:1407-1430.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心