Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China
详细信息   
摘要
Anthropogenic activities have altered the climate and led to changes in the water cycle. Understanding the climate change and hydrological responses is critical to derive adaptive strategies for sustainable water resources management. In this study, we diagnosed the trends of primary climate elements and hydrological components during the past half century (1960–2009) for the humid Xiangjiang River Basin in central-south China at multiple temporal and spatial scales. The air temperature trend demonstrated an overall warming climate but with a quicker pace in recent years; however, the wind speed reduced significantly in the early period, and this downtrend had largely disappeared after the mid-1990s. Under such a shifting climate, the hydrological responses were not monotonic during the past 50 years: the evapotranspiration behaved in a decreasing trend in the early 35 years (1960–1994), followed by an uptrend in the later period (1995–2009). The stepwise analysis of soil water content and baseflow demonstrated a wetting trend followed by a drying one but with a steeper slope, indicating an accelerated drying trend which may cause a concern in stream water availability especially in the dry season. Spatial trend analysis showed that some areas experienced a downtrend (drying) in the dry season, but most areas had an uptrend (wetting) in the wet season for the whole study period. Overall, the analyses of temporal and spatial changes are useful for decision makers to deal with the continuing changes in climate and hydrology. This study also highlighted the necessity of climate change studies at multiple temporal and spatial scales.