Rainfall–runoff temporal variability in Kermanshah province, Iran and distinguishing anthropogenic effects from climatic effects
详细信息   
摘要
Investigation of changes in rainfall and runoff patterns in various regions and determining their relationship in the sense of hydrology and climatology are of great importance, considering those patterns efficiently reveal the human and natural factors in this variability. One of the mathematical methods to recognise and model these fluctuations is Wavelet Analysis. This is a spectral method used in multivariate analysis and also tracing fluctuations in temporal series. In this study, continuous wavelet transformation is used to identify temporal changes in rainfall–runoff patterns. The hydrological and rain gauge data were collected from in situ measurements of Kermanshah province located in the western border of Iran. Precipitation anomalies were reconsidered in a number of stations, including Kermanshah, for a period of 55 years (1955–2010) and discharge of Gamasiab River in Polchehr station, discharge of Khoram Rood River in Aran-Gharb station and discharge of Gharasoo River in Polekohne station. In addition, anomalies of the climatic teleconnections were studied to emphasise the climatological effects on the runoff pattern in the region. The role of natural and anthropogenic effects (land use changes) has been distinguished and identified, using the comparison of the teleconnections and hydrological data. The results achieved from three stations show that there was an approximate correlation between rainfall, runoff and teleconnections until the year 1995; however, after 1995, a great difference appeared among them, specifically for the Aran-Gharb station (Khoram Rood River). The post-1995 slope of cumulative standardised anomaly is much steeper in the case of runoff compared to rainfall. As there were no significant climate changes in the region, it could be concluded that the runoff decrease is not caused by climate changes, but by anthropogenic effects, human interventions and extra water usage from the surface and underground water resources for agriculture and economic purposes.