Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique
详细信息   
  • 作者:Murat Cobaner (1)
  • 刊名:Irrigation Science
  • 年:2013
  • 期:2
  • DOI:10.1007/s00271-011-0297-x
  • 来源:SpringerLink
  • 类型:期刊
摘要
Accurate estimation of reference evapotranspiration (ET0) is important for water resources engineering. Therefore, a large number of empirical or semi-empirical equations have been developed for assessing ET0 from numerous meteorological data. However, records of such weather variables are often incomplete or not always available for many locations, which is a shortcoming of these complex models. Therefore, practical and simpler methods are required for estimating the ET0. In this study, the efficiency of a wavelet regression (WR) model in estimating reference evapotranspiration based on only Class A pan evaporation is examined. The results of the WR model are compared with those of three pan-based equations, namely the FAO-24 pan, Snyder ET0 and Ghare ET0 equations and their calibrated versions. Daily Class A pan evaporation data from the Fresno and Bakersfield stations of the United States Environmental Protection Agency in California, USA, are used in the study. The WR model estimates are compared against those of the FAO-56 Penman–Monteith equation. Results showed that the WR model is capable of accurately predicting the ET0 values as a product of pan evaporation data.