Multi-Objective Optimization of the Proposed Multi-Reservoir Operating Policy Using Improved NSPSO
详细信息   
摘要
Severe water shortage is unacceptable for water-supply reservoir operation. For avoiding single periods of catastrophic water shortage, this paper proposes a multi-reservoir operating policy for water supply by combining parametric rule with hedging rule. In this method, the roles of parametric rule and hedging rule can be played at the same time, which are reducing the number of decision variables and adopting an active reduction of water supply during droughts in advance. In order to maintain the diversity of the non-dominated solutions for multi-objective optimization problem and make them get closer to the optimal trade-off surfaces, the multi-population mechanism is incorporated into the non-dominated sorting particle swarm optimization (NSPSO) algorithm in this study to develop an improved NSPSO algorithm (I-NSPSO). The performance of the I-NSPSO on two benchmark test functions shows that it has a good ability in finding the Pareto optimal set. The water-supply multi-reservoir system located at Taize River basin in China is employed as a case study to verify the effect of the proposed operating policy and the efficiency of the I-NSPSO. The operation results indicate that the proposed operating policy is suitable to handle the multi-reservoir operation problem, especially for the periods of droughts. And the I-NSPSO also shows a good performance in multi-objective optimization of the proposed operating policy.