Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China
详细信息   
摘要
Water and sediment samples were collected from 45 lakes along the middle-lower Yangtze River, China. Each lake was sampled seasonally, over a period of one year. Water quality variables and metals in sediments were measured. Lakes along the lowest part of the river, within the Yangtze River Delta, had highest nutrient concentrations and were eutrophic or hypereutrophic. Lakes displayed a gradient in many water chemistry variables, from the middle to the lower Yangtze River. Lakes of the Delta region had the highest conductivity, sulfate, turbidity, and Chl-a values, and the lowest dissolved oxygen concentrations. A number of lakes near urban areas in the study region also displayed similar conditions. Lakes polluted by heavy metals were found in the upper part of the lower Yangtze River and had high Cu, Cr, and Co concentrations in sediments. The mean Igeo (index of geoaccumulation) values for Cu, Cr, and Co classes ranged from 0 to 4, indicating moderate to heavy contamination, contributed mainly from untreated industrial waste water produced within the lake catchments. Lakes of the middle Yangtze River are generally in relatively better condition, except for those around urban zones, which experience higher nutrient and heavy metal loading. The spatial distribution of lake conditions in the area can be related to the policy of regional economic development. The Delta region in China is developed and includes such cities as Shanghai and Suzhou. Heavy industries have moved into the interior region of China too, and development of modern cities is now occurring under some level of environmental protection. Nevertheless, lakes in the central part are becoming seriously polluted with both heavy metals and nutrients because local authorities promote industrialization and urbanization to improve economic conditions, while often ignoring environmental protection. Pollution is increasingly occurring in upstream reaches, a tendency that will bring more environmental problems. Interior lakes of China require immediate attention to prevent further declines in water quality.