Non-equilibrium alcohol flooding model for immiscible phase remediation: 2. Model development and application
详细信息   
摘要
A non-equilibrium, two-phase, three-component compositional model for the simulation of alcohol flooding has been developed and tested. Inter-phase mass transfer algorithms allow for transfer of all three components at high concentrations and high mass flux rates using a two-film model. The model has been used to simulate alcohol floods where the alcohol has an affinity for either the water-rich phase, or the organic-rich phase. Calibration, using experimental effluent data from an alcohol flood which used a 2-propanol (IPA)-water-tetrachlorethene (PCE) ternary system, indicates that inter-phase mass transfer parameters can be non-unique. Sensitivity studies, completed using the non-equilibrium model for the IPA-water-PCE system, indicate that experimentally derived organic-rich phase composition data should lead to better estimates of the non-wetting phase film thickness. For alcohol flooding experiments where the primary mechanism of non-aqueous phase liquid (NAPL) removal is enhanced dissolution, near-equilibrium conditions may be achieved with NAPL recovery similar for conditions of near-equilibrium and equilibrium. However, for system where remobilization is the primary mechanism of NAPL recovery, it is expected that although local conditions may approach equilibrium, the resulting NAPL recovery can be significantly lower than would be attained if equilibrium conditions persisted.